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Abstract 

Genome-wide association studies have uncovered thousands of genetic variants that are associated with 

a wide variety of human traits.  Knowledge of how trait-associated variants are distributed within and 

between populations can provide insight into the genetic basis of group-specific phenotypic differences, 

particularly for health-related traits.  We analyzed the genetic divergence levels for (i) individual trait-

associated variants and (ii) collections of variants that function together to encode polygenic traits, 

between two neighboring populations in Colombia that have distinct demographic profiles: Antioquia 

(Mestizo) and Chocó (Afro-Colombian).  Genetic ancestry analysis showed 62% European, 32% Native 

American, and 6% African ancestry for Antioquia compared to 76% African, 10% European, and 14% 

Native American ancestry for Chocó, consistent with demography and previous results.  Ancestry 

differences can confound cross-population comparison of polygenic risk scores (𝑃𝑅𝑆); however, we did 

not find any systematic bias in 𝑃𝑅𝑆 distributions for the two populations studied here, and population-

specific differences in 𝑃𝑅𝑆 were, for the most part, small and symmetrically distributed around zero.  Both 

genetic differentiation at individual trait-associated SNPs and population-specific 𝑃𝑅𝑆 differences 

between Antioquia and Chocó largely reflected anthropometric phenotypic differences that can be readily 

observed between the populations along with reported disease prevalence differences.  Cases where 

population-specific differences in genetic risk did not align with observed trait (disease) prevalence point 

to the importance of environmental contributions to phenotypic variance, for both infectious and 

complex, common disease.  The results reported here are distributed via a web-based platform for 

searching trait-associated variants and 𝑃𝑅𝑆 divergence levels at http://map.chocogen.com.   
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Introduction 

The genetic basis of human phenotypic diversity is both an issue of fundamental evolutionary interest and 

critical to a deeper understanding of health disparities.  Early genetic linkage analyses, and more recent 

genome-wide association studies (GWAS), have uncovered thousands of genetic variants that are 

associated with a wide variety of human traits (Amberger, et al. 2015; MacArthur, et al. 2017).  

Investigations of how trait-associated genetic variants are distributed within and between populations 

have the potential to shed light on the genetic architecture of human phenotypic diversity, particularly as 

related to disease prevalence disparities (Chande, et al. 2018; Corona, et al. 2013).   

The power of this approach has long been apparent for single locus traits.  Population-specific 

distributions of rare and highly penetrant variants that cause Mendelian diseases are responsible for a 

wide variety of population health disparities, such as sickle-cell anemia (OMIM: 603903), cystic fibrosis 

(OMIM: 219700) and Tay-Sachs disease (OMIM: 272800).  Of course, the vast majority of human traits are 

encoded by multiple loci, each of which contributes only a small fraction of the total trait variance 

(Visscher, et al. 2017).  Individuals’ genomic predispositions to such multi-locus traits can be captured by 

polygenic risk scores (𝑃𝑅𝑆) – also known as polygenic trait scores, genome-wide risk scores, or genetic 

risk scores – which are calculated as (weighted) sums of the total number of trait-associated or trait-

increasing alleles present in the genome (Chatterjee, et al. 2016; Lambert, et al. 2019).  Changes in 𝑃𝑅𝑆 

distributions across populations have been taken as evidence of polygenic selection on a number of 

anthropometric (Berg, et al. 2019; Racimo, et al. 2018; Turchin, et al. 2012), neurological (Beiter, et al. 

2017), and disease-related traits (Berg and Coop 2014). 

Despite their apparent potential for discovering genetic changes that underlie phenotypic divergence 

among populations, recent studies have underscored a number of challenges entailed by cross-population 

comparisons of 𝑃𝑅𝑆.  Systematic differences in allele frequencies, proportions of ancestral versus derived 

alleles, and patterns of linkage disequilibrium can yield large shifts in 𝑃𝑅𝑆 distributions that do not 

necessarily reflect observed phenotypic differences among populations (Kim, et al. 2018; Martin, et al. 

2017; Novembre and Barton 2018).  Furthermore, the fact that the vast majority of GWAS have been 

conducted on cohorts of European ancestry (Bustamante, et al. 2011; Need and Goldstein 2009; Popejoy 

and Fullerton 2016) yields 𝑃𝑅𝑆 that are far more accurate for European populations compared to other, 

less-studied global population groups (Martin, et al. 2019).  In light of these challenges, the goals of this 

study were to: (1) characterize the genetic ancestry patterns for diverse populations from within a single 

Latin American country, (2) evaluate the impact of ancestry differences between these populations on the 
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genetic variants associated with anthropometric and disease traits, and (3) consider observed differences 

in the frequencies of trait-associated variants in light of known phenotypic differences between the 

populations. 

Recently admixed populations hold great promise for studies aimed at characterizing the genetic basis of 

phenotypic divergence (Winkler, et al. 2010), but studies of cross-population 𝑃𝑅𝑆 have yet to focus 

explicitly on admixed populations.  Furthermore, studies of this kind have not focused on diverse 

populations that often co-exist in close physical proximity in the modern world.  Our research group is 

focused on the study of admixed American populations, with the broad aim of relating differences in 

ancestry to genetic determinants of health-related phenotypes (Jordan, et al. 2019; Nagar, et al. 2019; 

Norris, et al. 2019; Norris, et al. 2018; Rishishwar, et al. 2015a; Rishishwar, et al. 2015b).  Latin American 

populations are particularly interesting for studies of this kind given their high levels of genetic admixture 

among ancestral African, European, and Native American population groups (Bryc, et al. 2010; 

Homburger, et al. 2015; Moreno-Estrada, et al. 2013; Ruiz-Linares, et al. 2014).  Populations within and 

between Latin American countries are characterized by different levels of continental and regional 

ancestry.  We have been studying two neighboring populations from Colombia – Antioquia and Chocó – 

that are distinguished by a combination of close proximity and divergent demographic profiles.  We 

previously found that sample donors from Antioquia show primarily European genetic ancestry, whereas 

donors from Chocó show majority African ancestry (Conley, et al. 2017; Medina-Rivas, et al. 2016), and 

we showed that this divergent genetic ancestry, and the allele frequency differences that it entails, lead 

to an increase in the predicted risk of type 2 diabetes (T2D) in Chocó compared to Antioquia (Chande, et 

al. 2017).  T2D is an intensively studied disease, and this pattern of greater predicted T2D risk in Chocó 

holds irrespective of the ancestry of the GWAS cohorts used for risk allele discovery (Chande, et al. 2020).  

For this study, we performed a broader survey of the genetic divergence levels for trait-associated variants 

and differences in 𝑃𝑅𝑆 for these two admixed Colombian populations, and we considered the results of 

these comparisons in light of known (observable) demographic and phenotypic characteristics for these 

two populations.    
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Materials and Methods 

Genomic data  

The sources of genomic data used for this study are shown in Supplementary Table 1.  Whole genome 

genotype data for the population of Chocó, Colombia were taken from the ChocoGen research project 

https://www.chocogen.com (Conley, et al. 2017; Medina-Rivas, et al. 2016).  The ChocoGen project was 

conducted with the approval of the Ethics Committee of the Universidad Tecnológica del Chocó (ACTA No 

01-v1) following the Helsinki ethical principles for medical research involving human subjects.  All sample 

donors signed informed consent documents.  Whole genome sequence data for the population of 

Antioquia, Colombia were taken from the phase 3 data release of the 1000 Genomes Project (Genomes 

Project, et al. 2015).  The 1000 Genomes Project human genome sequence data are de-identified and 

made publicly available for research use without restriction.   

Whole genome sequence and genotype data for continental reference populations from Africa, the 

Americas, and Europe were taken from the 1000 Genomes Project and from a collection of previously 

characterized Native American populations (Reich, et al. 2012).  The Native American genotype data are 

de-identified and made publicly available for research according to the terms of a data use agreement 

from the Universidad de Antioquia.  A list of all bioinformatics programs and databases used for the 

analyses is shown in Supplementary Table 2.       

 

Genetic ancestry analysis 

Whole genome genotype and sequence variant data were merged using PLINK version 1.9 (Chang, et al. 

2015), with SNPs common to all three data sources retained for subsequent analysis and SNP strand 

orientations corrected as needed.  The merged SNP set was phased using ShapeIT version 2.r837 with the 

1000 Genomes Project haplotype reference panel (Delaneau, et al. 2013; Delaneau, et al. 2014), and PLINK 

was used to prune linked SNPs from the phased genotype dataset with an r2 threshold of 0.1.  The merged 

and pruned SNP set was used to infer three-way continental ancestry (fAfrican, fEuropean, fNativeAmerican) for 

Antioquia and Chocó using the program ADMIXTURE version 1.3.0  (Alexander, et al. 2009) run in 

unsupervised mode, with K=3  continental ancestral groups corresponding to the African, European, and 

Native American reference populations shown in Supplementary Table 1.  SNP allele frequency differences 

and Fixation Index (FST) values between Antioquia and Chocó were computed from the merged SNP set 

using PLINK.  FST values were calculated using the Weir and Cockerham estimator (Weir and Cockerham 
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1984).  Ternary plots were constructed using the inferred global ancestry fractions for each individual and 

the position of each individual (point) within the triangle is a composition of the individual’s three ancestry 

components: (
1

2
∙

2𝐴+𝑁

𝐸+𝐴+𝑁
,

√3

2
∙

𝑁

𝐸+𝐴+𝑁
) , where 𝐸, 𝐴, and 𝑁 are the inferred European, African, and Native 

American ancestry components. 

 

SNP trait-associations and polygenic scores 

SNP trait-associations were taken from the NHGRI-EBI GWAS Catalog (https://www.ebi.ac.uk/gwas/) 

(Buniello, et al. 2019), with the SNP rsid number, effect allele, effect size and study population recorded 

for all associations.  Effect alleles are operationally defined as the allele for any given SNP that is associated 

with cases, for case-control GWAS, or with an increase in the trait under consideration for quantitative 

trait GWAS.  The SNP associations used here are limited to biallelic variants, do not include SNP 

interactions, and are all significant at P<1x10-5 (# of SNPs = 107,784).  SNP associations were grouped into 

polygenic traits using the NHGRI-EBI GWAS Catalog trait terms (# of traits = 2,382), which are derived from 

the EBI Experimental Factor Ontology (https://www.ebi.ac.uk/efo/) (Malone, et al. 2010).  After filtering, 

65,283 (60.5%) SNPs remained.  Of the 42,501 (39.5%) associations excluded: 25,305 (23.5%) had an 

unknown or unreported effect allele (effect allele = “?”); 14,615 (13.5%) had multiple reported effect 

alleles for the same trait and reported effect alleles were not strand-flips (i.e., A and C); and 2,581 (2.4%) 

had no associated rsID (i.e., the variant is given by chromosomal location, chr1:2345). 

Whole genome genotype data from Chocó were imputed up to 1000 Genomes phase 3 variant calls using 

the program IMPUTE2 version 2.3.2 (Howie, et al. 2012; Howie, et al. 2011) and the 1000 Genomes Project 

haplotype reference panel.  Imputed sites were retained for subsequent analysis if they had a 95% 

imputation rate across samples and an INFO score > 0.4.  The imputed data from Chocó were merged with 

the whole genome sequence variant data from Antioquia using PLINK. 

Polygenic risk scores (𝑃𝑅𝑆), also referred to as polygenic trait scores, were computed for each GWAS trait 

𝑖 as the sum of the effect alleles across all trait-associated SNPs as previously described (Chande, et al. 

2018): 

𝑃𝑅𝑆𝑖 =
∑ 𝐸𝐴𝑗

𝑛
𝑗=1

∑ 𝐴𝑗
𝑛
𝑗=1
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where  𝐸𝐴𝑗 ∈ {0,1,2} corresponds to homozygous absent, heterozygous present or homozygous present 

effect alleles at each SNP and 𝐴𝑗 ∈ {0,1,2} corresponds to the total number of alleles with base calls at 

each SNP.   

Our approach to 𝑃𝑅𝑆 calculation and comparison between populations is characterized by three 

important choices: (1) the use of only significantly associated SNPs (P<10-5) for 𝑃𝑅𝑆 calculation, (2) the 

calculation of 𝑃𝑅𝑆 that are unweighted by SNP effect sizes, and (3) the calculation of 𝑃𝑅𝑆 without the use 

of linkage disequilibrium (LD) pruning or clumping.  𝑃𝑅𝑆 were calculated in this way to facilitate 

comparisons of 𝑃𝑅𝑆 distributions between divergent populations with distinct ancestry profiles and LD 

structures.  (1) The use of a relatively small number of significantly associated SNPs, albeit at the relaxed 

threshold of P<10-5 used by the NHRI-EBI GWAS database, is known as the “top-SNP” approach, in contrast 

to the use of far more liberal P-value thresholds that allow for the inclusion of thousands or even millions 

of variants for 𝑃𝑅𝑆 calculation.  The top-SNP approach has been shown to mitigate the effects of 

population structure, particularly compared to approaches that use many thousands or millions of SNPs, 

which are essentially guaranteed to recapitulate population structure (Duncan, et al. 2019).  Furthermore, 

the top-SNP approach to 𝑃𝑅𝑆 calculation has been shown to work almost as well or better compared to 

the approach using many thousands or even millions of SNPs (Khera, et al. 2018).  For example, a top-SNP 

approach to T2D 𝑃𝑅𝑆 calculation using only 72 SNPs yielded an accuracy (area under the curve) of 0.70 

compared to an average accuracy of 0.71 when more than 6.9 million SNPs were used.  (2) Unweighted 

𝑃𝑅𝑆 were used to allow for combining SNP trait-associations across multiple studies, each with distinct 

effect size estimates (Chande, et al. 2018).  Effect sizes from different studies cannot be readily combined 

owing to differences in study cohorts, including cohort size, allele frequencies, and population structure.  

Furthermore, since effect sizes represent SNP heritability estimates, which are dependent on the 

particular cohort that is being studied, it does not make sense to attempt to normalize effect sizes across 

studies.  (3) We opted not to use linkage disequilibrium (LD) pruning for 𝑃𝑅𝑆 calculation to facilitate direct 
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comparison of PRS between populations with divergent LD structures.  In particular, the top-SNP approach 

means that we are using a relatively small number of SNPs per population and the divergent LD structure 

means that different subsets of this small number of SNPs would likely be removed from each population 

if LD pruning were used.  Thus, our approach to PRS calculation without LD pruning provides for both 

additional resolution, in terms of the numbers of SNPs available for analysis, and more direct comparisons 

between populations with divergent LD structures.  Furthermore, several studies, including our own work, 

have shown that 𝑃𝑅𝑆 calculated with and without LD pruning do not show big differences (Chande et al 

2020; De La Vega and Bustamante 2018; Elliott, et al. 2020).  An extended discussion of the rationale that 

underlies our 𝑃𝑅𝑆 calculation method can be found in the Supplementary Methods section. 

For each of the three continental ancestry components (fAfrican, fEuropean, fNativeAmerican), individuals’ 

continental ancestry fractions were regressed against their PRS using unweighted ordinary least squares 

regression (OLS): 

𝑃𝑅𝑆𝑖 =  𝛼 + β𝑥𝑖 + 𝜀𝑖  (eq. 3) 

where 𝑃𝑅𝑆𝑖is the predicted polygenic risk score for individual 𝑖; α and β are constants describing the 

intercept and slope, respectively; 𝑥𝑖  is the ancestry fraction for individual 𝑖; and 𝜀𝑖 is an error term 

describing the deviation from the fitted line.  The resulting OLS produces: β0, the model β or slope; the 

standard error of the model; the 𝑟2 value describing the model’s fit; the model t-statistic; and a two-tailed 

P-value. 

Trait-associated SNPs were mapped to the nearest genes for pathway enrichment analysis using the 

ENSEMBL rsID to HGNC mapping API (getBM) provided as part of the biomaRt R package (attributes = 

refsnp_id, ensemble_gene_stable_id, hgnc_symbol, entrezgene_id; filter = snp_filter & 

ensembl_gene_id; values = GWAS Catalog SNP rsIDs).  SNPs that did not return an HGNC mapping were 

discarded.  Genes were assigned population-specific effect allele frequency difference values (∆𝑓 =

𝑓(𝐸𝐴𝐴𝑛𝑡) − 𝑓(𝐸𝐴𝐶ℎ𝑜)) based on the SNP with the maximum effect allele frequency difference: 
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max |∆𝑓𝑔,𝑖|, where 𝑔 is a trait-associated gene and 𝑖 is 𝑖th SNP in gene 𝑔.  The ∆𝑓 values for all mapped 

trait-associated genes were used to create population-specific gene lists for pathway over representation 

analysis using the hypergeometric test implemented in the “enricher” function from the clusterProflier 

version 3.14.0 R package (Yu, et al. 2012).  Briefly, for each gene, the sign on ∆𝑓 was used to assign a gene 

to the Antioquia (positive) or Chocó (negative) gene lists.  For each population-specific gene list and for 

each gene set, a hypergeometric test was performed using:  
(𝑚

𝑘 )(𝑁−𝑚
𝑛−𝑘 )

(𝑁
𝑛)

, where 𝑚 is the number of 

population-specific genes, 𝑘 is the number of population-specific genes in gene set, 𝑛 is the number of 

genes in gene set, and 𝑁 is number of genes in the background.  Gene sets from the KEGG, MSigDB 

(http://software.broadinstitute.org/gsea/msigdb/), and PID (http://pid.nci.nih.gov) were used in the 

enrichment analysis. 

The relative predicted disease risk and observed disease prevalence for Antioquia and Chocó were 

computed as the log2 odds ratio for the effect allele frequencies and the reported age-adjusted disease 

prevalence values for Chocó/Antioquia.  For each disease-associated SNP, its log odds ratio is computed 

as: log2
𝑝𝐶ℎ𝑜 𝑞𝐶ℎ𝑜⁄

𝑝𝐴𝑛𝑡 𝑞𝐴𝑛𝑡⁄
, where 𝑝𝑝𝑜𝑝 is the population-specific frequency of the effect allele and 𝑞𝑝𝑜𝑝 is the 

population-specific frequency of the non-effect allele.  The log odds ratio values for all associated SNPs 

were summed for each disease.  The log odds ratio for disease prevalence is computed as: 

log2
𝐷𝑖𝑠𝑒𝑎𝑠𝑒𝐶ℎ𝑜 𝑁𝑜 𝑑𝑖𝑠𝑒𝑎𝑠𝑒𝐶ℎ𝑜⁄

𝐷𝑖𝑠𝑒𝑎𝑠𝑒𝐴𝑛𝑡 𝑁𝑜 𝑑𝑖𝑠𝑒𝑎𝑠𝑒𝐴𝑛𝑡⁄
.  Disease prevalence (𝐷𝑖𝑠𝑒𝑎𝑠𝑒𝑝𝑜𝑝 and 𝑁𝑜 𝑑𝑖𝑠𝑒𝑎𝑠𝑒𝑝𝑜𝑝) was defined as the 

population- and age-adjusted prevalence per 100,000 and (100,000 –  𝑝𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒) reported for each 

department in 2017 and were taken from Colombian governmental and non-governmental resources (see 

Demographic, lifestyle and disease prevalence data section below). 

 

Demographic, lifestyle and disease prevalence data 

A variety of sources was used to curate demographic, lifestyle and disease prevalence data for Antioquia 

and Chocó.  The 2005 general census published by the Colombian Departamento Administrativo Nacional 

de Estadística (DANE) was used for demographic and socio-economic status data (Uribe Vélez, et al. 2006).  

Disease prevalence data were taken from three epidemiological databases: (1) Cuenta de Alto Costo 

(https://cuentadealtocosto.org/), (2) Observatorio de Diabetes de Colombia (http://www.odc.org.co/), 

and (3) the Sistema Integral de Información de la Protección    Social 
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(https://www.minsalud.gov.co/salud/Paginas/SistemaIntegraldeInformaciónSISPRO.aspx).  Diet and 

lifestyle data were taken from the Colombian national nutritional survey (Alvarez 2006). 

 

Results and Discussion 

Demography and genetic ancestry in Antioquia and Chocó 

Antioquia and Chocó are Colombian administrative departments (i.e. states) that are located in the 

northwestern part of the country and share a common border (Figure 1A).  Chocó runs along the Pacific 

coast and borders Panamá to the north; it is the only department in Colombia with Pacific and Atlantic 

coasts.  Antioquia is situated due east of Chocó, in the interior of the country, and also has a short Atlantic 

coastline.  Despite their close proximity, the two departments have very distinct geography and climate 

as well as distinct historic and demographic profiles.  Antioquia occupies the mountainous Andean region 

of the country and is traversed by the Western and Central Andes mountain ranges.  According to the 

2005 census, approximately 89% of the Antioquia population identifies as white or mestizo compared to 

11% black or Afro-Colombian and less than 1% Indigenous.  Chocó lies along the lowland Pacific coastal 

region and is almost entirely covered by dense tropical rainforest.  The climate is hot and humid, and the 

region receives some of the highest rainfall totals in the world.  The population of Chocó identifies as 8% 

Afro-Colombian, 13% Indigenous, and 5% white or mestizo. 

Genome-wide variant data from Antioquia and Chocó were compared to data from African, European, 

and Native American continental reference populations to infer the patterns of genetic ancestry and 

admixture in the two Colombian populations.  The genetic ancestry of Antioquia and Chocó reflect their 

distinct historical founding populations, physical and cultural barriers to migration, and current 

demographic profiles (Figure 1B and 1C).  Antioquia shows predominantly European genetic ancestry 

(average ± standard error; 62% ± 1.55) followed by Native American (32% ± 1.24) and then African (6% ± 

0.83) components; whereas, Chocó has primarily African genetic ancestry (76% ± 1.65) with approximately 

equal parts Native American (14% ± 0.83) and European (10% ± 1.03) ancestry. 

 

Single variant divergence and phenotypic associations 

The potential impact of ancestry differences between Antioquia and Chocó on the genetic architecture of 

phenotype and function was assessed for individual SNP trait-associations (Figure 2).  A total of 47,398 
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SNP trait-associations were curated and evaluated with respect to the extent and direction of 

differentiation between Antioquia and Chocó.  Population differentiation was measured by effect allele 

FST values and frequency differences between the two populations (Figure 2A and 2B, Supplementary 

Table 3).  The top 20 most extreme values correspond to both known phenotype and disease prevalence 

differences between the two populations as well as novel differences (Supplementary Figure 1).  

Pigmentation associated variants for both skin and hair show expected differences with lighter skin and 

hair effect alleles found in higher frequency in Antioquia compared to Chocó.  Antioquia also shows higher 

frequencies of Crohn’s and inflammatory bowel disease SNP effect alleles than Chocó, whereas Chocó 

shows higher frequencies of variants associated with prostate and breast cancer along with Alzheimer’s 

and asthma, consistent with known health disparities around the world.  Chocó also showed a 

substantially higher frequency of variants linked to resistance to the malaria parasite Plasmodium vivax.  

Unexpected results include the higher frequency of nicotine use associated SNP effect alleles in Chocó, as 

tobacco use is known to be lower in Chocó compared to Antioquia, the greater waist-hip ratio in Antioquia, 

and the increased longevity in Chocó.   

Word clouds provide a visual sense of the overall between-population divergence for all trait-associated 

SNPs, with the most enriched traits highlighted for each population (Figure 2C).  The word clouds were 

generated using all trait-associated SNPs that showed FST > 0.2, 61 SNPs for Antioquia and 98 for Chocó, 

and therefore provide additional resolution on the divergence of single variant associations between 

populations.  For example, schizophrenia appears in the word clouds for both populations (Figure 3B), 

with more weight in Chocó, although it was not present in the top 20 divergent associations shown in 

Figure 2 panels A and B.  Obesity related traits appears as overrepresented in Chocó in the word cloud 

(Figure 2C), despite the fact that the most diverged body mass index SNP shows higher frequency in 

Antioquia (Figure 2A & B).  This is due to a preponderance of obesity-associated SNPs among the total set 

of variants with FST > 0.2 and is consistent with what is seen via polygenic trait divergence analysis (see 

next section and Figure 3).  Overall, the population divergence observed for single variant associations are 

consistent with reported health disparities and demographic data in Colombia and Latin American 

(Supplementary Table 4).  
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Polygenic trait divergence 

Most human phenotypes are encoded by multiple loci across the genome, each of which contributes to a 

small fraction of the overall trait variance, i.e. they are polygenic.  The relationship between genetic 

ancestry and polygenic trait architecture in Antioquia and Chocó was assessed by comparing distributions 

of polygenic risk scores (𝑃𝑅𝑆) between the two populations (Figure 3, Supplementary Table 5).  A total of 

1,983 𝑃𝑇𝑆 were compared between the two populations, and the overall distribution of ∆𝑃𝑅𝑆 (𝐴𝑛𝑡 −

𝐶ℎ𝑜𝑐) is symmetrically distributed around -0.01 (Supplementary Figure 2), indicating that the differences 

in genetic ancestry between the populations is slightly biased towards increased predicted risk in Chocó 

in cross-population 𝑃𝑅𝑆 inference (p < 0.001).  This is consistent with theoretical results showing that the 

divergence of neutral polygenic traits between populations is expected to be small, no different from the 

expectation for single gene traits, and symmetrically distributed around zero (Edge and Rosenberg 2015a, 

b).   ∆𝑃𝑅𝑆 (𝐴𝑛𝑡 − 𝐶ℎ𝑜𝑐) values for traits that show significantly different mean 𝑃𝑅𝑆 (Holm-Bonferroni 

corrected P<0.05) are shown in Figure 3A (column D in Supplementary Table 5), and population-specific 

𝑃𝑅𝑆 distributions for individual traits of interest are shown in Figure 3B.  The specific traits of interest 

were chosen based on their highly divergent 𝑃𝑅𝑆 values and their relevance to Colombia owing to the 

reported public health burden in the country and as reflected by their descriptions in epidemiological 

and/or census databases.  

The individual 𝑃𝑅𝑆 distributions shown in Figure 3B are organized into anthropometric and disease traits, 

most of which correspond to the top SNPs from Figure 2.  For anthropometric traits, Antioquia has a higher 

predicted height and body mass index (BMI), whereas Chocó has higher predicted values for several 

pigmentation related traits: hair, eye, and skin color.  For disease traits, Antioquia has greater predicted 

risk for inflammatory bowel disease, ischemic stroke, and allergic sensitization, whereas Chocó has a 

higher predicted risk for mortality in heart failure, immunity to malaria, and environmentally 

(diisocyanate) induced asthma.  We also explored the impact of GWAS discovery and replication 

population ancestry on PRS differences for four selected traits from Figures 2 and 3 for which multiple 

GWAS utilizing different ancestry populations were available: asthma, ischemic stroke, myopia, and type 

2 diabetes (Supplementary Figure 3, Supplementary Table 6).  In all cases, significant differences in 

predicted population risk profiles were robust to discovery population ancestry, suggesting a shared 

genetic architecture of risk.  In addition, predicted population-specific disease risk profiles are consistent 

with what has been observed in Colombia (Supplementary Table 4) as well as with known ancestry-disease 

associations worldwide: e.g. asthma (Moorman, et al. 2007; Nyenhuis, et al. 2017), heart failure (Bahrami, 
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et al. 2008; Bibbins-Domingo, et al. 2009), irritable bowel disease (Nguyen, et al. 2014; Park and Jeen 

2019), malaria (Shriner and Rotimi 2018; Tishkoff, et al. 2001; Yao, et al. 2018), and stroke (Zweifler, et al. 

1995). 

We also explored population-specific differences in endophenotypes, with respect to specific pathways 

and/or biochemical functions that underlie the observed trait differences, using pathway enrichment 

analysis (Figure 4).  Antioquia shows enrichment for integrin pathways implicated in a number of cancers 

and inflammatory bowel disease.  Chocó shows enrichment for a number of cancer-related pathways, 

including prostate cancer, which is known to be more prevalent in men of African ancestry (Mahal, et al. 

2018; Toles 2008), as well as T2D and related glycerolipid metabolism pathways.   

Given the differences in genetic ancestry seen for Antioquia and Chocó (Figure 1), we evaluated the 

relationship between individuals’ continental genetic ancestry fractions and their 𝑃𝑅𝑆 for each trait 

considered here.  It should be noted that, despite the clear differences in the overall ancestry differences 

seen for the two Colombian populations, almost all individuals analyzed here show substantial admixture 

with varying fractions of African, European, and Native American ancestry.  This fact allowed us to 

correlate genetic ancestry and 𝑃𝑅𝑆 along a continuum of continental ancestry fractions (Figure 5).  There 

are significant differences in the magnitude of the 𝑃𝑅𝑆 correlations among the three ancestry 

components (F=4.79, P=8.3×10-3); African ancestry shows the highest overall correlation with the 𝑃𝑅𝑆 

values of all traits analyzed here, as shown by the median of the distribution, followed by the European 

and then the Native American ancestry components (Figure 5A).  All three populations show a number of 

apparent cases of high correlations between ancestry and 𝑃𝑅𝑆.  All traits that show r2>0.4 for any of the 

three ancestry components are shown in Figure 5B, and individual examples of ancestry × 𝑃𝑅𝑆 regressions 

are shown in Figure 5C.  Breast cancer 𝑃𝑅𝑆 is positively associated with European ancestry and negatively 

associated with African ancestry (Figure 5C), in contrast to what was seen for an individual breast cancer 

associated variant found at higher frequency in Chocó (Figure 2B).  This difference is best explained by the 

analysis of individual SNPs shown in Figure 2 and the PRS based on multiple SNPs, which are likely to be 

more reliable, shown in Figures 3 and 5.  All ancestry × 𝑃𝑅𝑆 r2 values are shown in Supplementary Table 

7.    

The high correlations observed between ancestry and 𝑃𝑅𝑆 could be attributed to artifacts related to 

uneven cohort sampling in GWAS, as previously discussed, or they could represent actual ancestry-related 

phenotypic differences between the two populations.  The small overall systematic bias in 𝑃𝑅𝑆 for the 

two populations (Supplementary Figure 2), considered together with the fact that most of these ancestry-
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associations conform to observable anthropometric features and/or previously suggest that these 

associations reflect real phenotypic differences.  However, definitive proof for this would require 

individual-level phenotype data, as opposed to the population-level data used here, as well as the use of 

trait-associated variants that replicate across ancestry-specific GWAS.  It should also be noted that these 

regressions could be confounded by a number of other variables including sex, age, and socioeconomic 

status that are not available for this study, and which would need to be simultaneously modeled to ensure 

that the correlations between ancestry and 𝑃𝑅𝑆 observed here are robust.  

 

Predicted versus observed disease risk profiles 

Population-specific differences for trait-associated variants, both for single SNP associations and polygenic 

traits, showed an overall concordance between genetic risk predictions and observed anthropometric and 

epidemiological profiles for Antioquia and Chocó (Figures 2 and 3).  We quantified the relationship 

between predicted disease risk and observed prevalence for twelve high impact diseases that have been 

prioritized by the Colombian Ministry of Health via the ‘Cuenta de Alto Costo’ 

(http://www.cuentadealtocosto.org/).  This analysis was done for complex common diseases, cancers, 

and infectious diseases (Figure 6).  T2D shows the largest difference between predicted disease risk versus 

observed disease prevalence for Antioquia and Chocó.  We previously showed that this difference can be 

attributed to higher genetic risk associated with African genetic ancestry and T2D protective 

environmental factors associated with socioeconomic status in Chocó (Chande, et al. 2017).  In Colombia, 

environmental factors associated with differences in development across the country appear to have a 

high impact on the risk of complex common diseases like T2D.  A similar, albeit not nearly as extreme, 

difference can be seen for chronic kidney disease; Chocó has a higher predicted genetic risk but lower 

prevalence compared to Antioquia.  Higher risk for chronic kidney disease has been observed for Afro-

descendant populations in other countries (Crews, et al. 2010; Kaze, et al. 2018), consistent with the 

higher genetic risk for Chocó seen here, thus it may be the case that similar environmental protective 

factors, with respect to diet and lifestyle, serve as protective factor for chronic kidney disease in Chocó.  

Finally, there are large differences in predicted risk (susceptibility) versus observed prevalence for malaria 

caused by both Plasmodium vivax and P. falciparum.  The population of Chocó has lower predicted risk 

for malaria infections, consistent with previous studies on Afro-descendant populations (Shriner and 

Rotimi 2018; Tishkoff, et al. 2001; Yao, et al. 2018), but both P. vivax and P. falciparum are far more 
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prevalent in Chocó compared to Antioquia (Battle, et al. 2019; Nosten and Phyo 2019; Weiss, et al. 2019), 

thereby explaining the higher malaria prevalence in Chocó. 

 

Conclusions 

Results on the population divergence of trait-associated variants reported here should be interpreted with 

caution in light of the previously discussed challenges to cross-population genetic risk inference (Kim, et 

al. 2018; Martin, et al. 2017; Martin, et al. 2019; Novembre and Barton 2018).  This is particularly true for 

populations that have strikingly different ancestry profiles, as is the case for Antioquia and Chocó.  

However, for this study, the general concordance seen between genetically inferred (predicted) 

phenotypic differences and the observed differences for anthropometric traits, or known prevalence 

differences in the case of disease traits, supports the approach taken here (Supplementary Table 4).  It 

should be stressed that both trait-associated variant allele frequencies and 𝑃𝑅𝑆 distributions overlap 

substantially between Antioquia and Chocó; in other words, predicted phenotypic differences vary along 

a continuum, with distinct group-specific averages in a minority of cases, as opposed to showing discrete 

values between populations.  This is consistent with the expectation that the majority of genetic variation 

is found within rather than between human populations (Lewontin 1972; Li, et al. 2008). 

Finally, it is important to note that detailed individual-level phenotypic information will be needed to more 

rigorously evaluate the implications of genetic divergence at trait-associated variants in diverse 

populations of the kind studied here.  Fortunately, data of this kind are increasingly being generated by 

biobank collections around the world, via the combination of genetic profiles and detailed phenotypic 

information gleaned from participant surveys and electronic health records.  Many of these biobanks – 

e.g. All of Us, BioMe, and the UK Biobank – include the kind of ancestrally diverse participant cohorts that 

can facilitate detailed investigations on the genetic basis of group-specific trait differences and health 

disparities. 

The results reported here are distributed via a web-based platform that allows users to explore the extent 

of between-population divergence for individual trait-associated variants and for 𝑃𝑅𝑆: 

http://map.chocogen.com    
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Figure Legends 

Figure 1.  Genetic ancestry in Antioquia and Chocó.  (A) The locations of the Colombian administrative 

departments of Chocó (purple) and Antioquia (green) are shown along with pie charts indicating the 

average continental ancestry fractions: African (blue), European (orange), and Native American (red).  (B) 

Ternary plots showing the relative contributions of African, European, and Native American ancestry to 

individuals from Antioquia (green) and Chocó (purple).  (C) ADMIXTURE plot showing the continental 

ancestry fractions for African (blue), European (orange), and Native American (red) reference populations 

together with Antioquia and Chocó.  

 

Figure 2. Single nucleotide variant phenotype associations.  (A) Polarized fixation index (FST) values for 

divergent trait-associated SNP effect alleles: higher effect allele frequency in Antioquia (left, green) and 

higher effect allele frequency Chocó (right, purple).  The corresponding SNP associations are shown in 

panel B (see Supplementary Table 3 for details).  (B) Heatmap of effect allele frequencies in Antioquia and 

Chocó (see key) and their SNP associations.  (C) Word clouds showing the enrichment of SNP-associated 

traits for each population.  Word clouds were generated by counting the occurrences of SNP trait-

annotations for SNPs with an FST value >0.2, 98 for Chocó and 61 for Antioquia (all SNPs significantly 

divergent at P<<0.001; Supplementary Table 3), and words are scaled by number of times they appear in 

the trait association list. 

 

Figure 3.  Polygenic risk divergence.  (A) Distribution of the differences in population-average polygenic 

trait scores (𝑃𝑅𝑆) are shown for significantly divergent traits: higher in Antioquia (above, green) and 

higher in Chocó (below, purple).  (B)  Population-specific 𝑃𝑅𝑆 distributions for examples of 

anthropometric and disease traits are shown for Antioquia (green) and Chocó (purple) along with the 

significance levels for the distribution differences. Traits with increased prevalence/risk in Antioquia are 

shown on the left, with increased prevalence/risk in Chocó are shown on the right. 

 

Figure 4.  Population-specific differences in trait endophenotypes: pathways and biochemical functions.  

Gene set enrichment was used uncover pathways and functional gene sets that are enriched for divergent 

associated SNPs in each population.  For each pathway or function, circles are scaled to the relative 
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number of implicated genes for each population and colored according to the population-specific levels 

of enrichment. 

 

Figure 5.  Genetic ancestry and polygenic trait divergence.  (A) Distributions of the correlations (r2) 

between individuals’ genetic ancestry fractions– African (blue), European (orange), Native American (red) 

– and their polygenic trait scores (𝑃𝑅𝑆) for all traits analyzed here.  Vertical lines show the median for 

each distribution.  (B) Ancestry x 𝑃𝑅𝑆 correlations (r2) polarized by the direction of the correlation 

(positive or negative) are shown for all traits where r2>0.4 for at least one ancestry component – African 

(A), European (E), and Native American (N).  (C)  Examples of polygenic traits with high correlations 

between ancestry and 𝑃𝑅𝑆 are shown.  Ancestry components are color-coded as in panel A, and for each 

scatter plot, ancestry fractions (y-axis) are regressed against 𝑃𝑅𝑆 (x-axis).  Linear trend lines with 95% 

confidence intervals are shown for each regression. 

 

Figure 6.  Predicted versus observed disease risk.  Left: For each disease, the predicted genetic risk 

difference for Antioquia compared to Chocó (red circles) is compared to the observed prevalence of the 

disease (blue circles).  Right: The differences between predicted disease risk minus observed prevalence.  

Diseases are grouped into bands as complex, common diseases (yellow), cancer (blue), and infectious 

disease (red).  The x-axis values are log odds ratios for population-specific disease risk allele frequencies 

and observed disease prevalence values, as described in the Materials and Methods.  
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