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As of 5 October 2020, there have been over seven million doc-
umented cases of SARS-CoV-2 in the United States, lead-
ing to more than 200,000 documented fatalities1. Despite 

large-scale efforts to suppress disease spread via lockdown orders 
and other non-pharmaceutical interventions including mask  
wearing2, there has been a resurgence of SARS-CoV-2 cases in the 
United States since late summer 2020; particularly in the south 
and west followed by a resurgence of cases in the midwest in early 
autumn 2020 (refs. 3,4). The rise of cases threatens public health, 
economic recovery and the re-opening of K-12 schools as well as 
colleges and universities5,6.

The basic reproduction number and large fraction of asymptom-
atic cases represent challenges for controlling SARS-CoV-2 (ref. 7). 
Early estimates of the basic reproduction number of SARS-CoV-2 
range from 2.1 to 4.5 (ref. 8), with current best estimates from the 
Centers of Disease Control and Prevention (CDC) indicating a 
basic reproduction number of 2.5 (ref. 9). Early studies found that 
approximately half of cases may be via presymptomatic, mild or 
asymptomatic transmission10,11. The absence of commonly asso-
ciated symptoms (fever, cough, shortness of breath) may be more 
pronounced in younger individuals. In addition, effective isolation 
of symptomatic cases may increase the fraction of circulating cases 
that are mild or asymptomatic.

The strong and often undocumented spread of SARS-CoV-2 
is exacerbated by large transmission incidents12, referred to as 
‘super-spreading’ events13. Super-spreading of SARS-CoV-2 has 
been documented in multiple, indoor events or large gatherings in 
which a single infector is putatively associated with the infection 
of dozens (or more) of individuals14–16. Large gatherings pose par-
ticular challenges for preventing the spread of SARS-CoV-2. First, 
the risk that one (or more) individuals is infected increases rapidly 
with group size; increasing the inherent risk of a potential expo-
sure as groups increase in number. Second, the number of potential 
interactions increases with gathering size (up to the square of the 

number of individuals in small groups where all individuals might 
be in contact). Third, follow-up contact tracing is problematic given 
the potential unknown nature of identifying close interactions. 
Although the last two challenges can be hard to quantify due to 
logistical and privacy reasons, this first category of risk is quantifi-
able, presents a gateway to action taking and should be communi-
cated to the public at large.

In March 2020, one of us (J.S.W.) developed a scenario-driven 
approach to assess the risk that one (or more) individuals in a group 
was infected in groups of size 10, 100, 1,000, 10,000 and even 100,000 
(ref. 17). The risk chart highlighted combinations of event size n and 
circulating cases in the United States that had equal risk. The visual-
ized risk contours can be defined via a binomial statistical model 
as a set of values (p,n) such that risk is a constant r = 1 − (1 − p)n  
(the implications of these risk contours at the early stages of 
the SARS-CoV-2 outbreak in the United States are discussed in  
refs. 18–20). Given a risk level r defined between 0 and 1, the per-capita 
probability along an equirisk contour scales as 1/n (converging rap-
idly to 0 when n is large). Hence, large events can potentially seed 
transmission even when the per-capita probability that an individ-
ual is infected remains low.

With shelter-in-place orders now suspended in most of the 
United States, many businesses (from retail to sports), recreational 
facilities, daycare centres, schools (both K-12 and colleges/universi-
ties) are evaluating re-opening plans. These plans must also gauge 
the probable risk of transmission. The COVID-19 Real-Time Event 
Risk Assessment website (https://covid19risk.biosci.gatech.edu/) 
uses a data-driven approach to connect circulating case reports with 
risk assessment by adapting a binomial model of risk to real-time 
estimates at the county level. The central purpose is to quantify and 
visualize the expected risk associated with gatherings of different 
sizes and to help guide action taking by policy makers and public 
health departments, as well as event planners and visitors. The inter-
active website has drawn over two million visitors since the launch 
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of the county-level map on 7 July 2020, is updated daily and con-
tinues to provide real-time estimates of event-associated risk with 
extensions to risk assessment in select countries globally (released 
on 5 October 2020). As we describe below, the visualized risk maps 
are intended to inform individuals on the need to take preventative 
steps to reduce new transmission, for example, by avoiding large 
gatherings and wearing masks when in close contact with others.

Results
Real-time risk is heterogeneous, reflecting recent increases in 
cases. We used a binomial probability model to assess the risk that 
one or more individuals is infected with SARS-CoV-2 (see prob-
ability model, Methods). The risk that one or more individuals 
is infected at an event is equivalent to one minus the probability 
that no individuals are infected given a per-capita infection risk  
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Fig. 1 | Heterogeneous risk map. a,b, The map depicts risk given events of size 50 using ascertainment biases of ten times (a) and five times (b) on 1 May, 
1 June, 1 July and 1 August 2020. Alaska and Hawaii were resized to be smaller than they actually are on the web.
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estimated using recent case reports multiplied by an ascertainment 
bias informed by serological surveys. To assess risk variation, we 
measured county-level heterogeneity by combining time-varying 
estimates given reported case counts from May to August at the 
county level. Figure 1 shows four snapshots, spaced monthly, cor-
responding to estimated risk associated with gatherings of 50 indi-
viduals on 1 May, 1 June, 1 July and 1 August 2020. These snapshots 
reveal that gathering-associated risk was heterogeneous and con-
centrated in the northeast (and to some extent in the southwest) 
in early May with higher risk associated with the south and south-
east beginning in early June. Critically, the regional shift in current 
risk means that use of cumulative case or death counts does not 
necessarily provide near-term actionable information on ongo-
ing risk. We note that estimates are affected by uncertainty in the 
ascertainment bias; the default option is ten times correspond-
ing to the median of serologically positives to PCR positives in 
locale-centred population surveys conducted in April to May 202021 
(Methods). In light of increased testing, we also include a five-times  
ascertainment bias (see Discussion for more details).

Information can be conveyed by focusing on risk associated with 
intermediate-scale events. One key choice in visually displaying 
risk is selecting event sizes that are meaningful in a public health 
context, can be precomputed and effectively communicate differ-
ential risk. Precomputation is key to accommodate a large num-
ber of users simultaneously. The choice of gathering size strongly 
influences the information content of county-level maps. The map 
includes six different coloured bins representing the probability of 
an infected individual being present at an event: <1, 1–25, 25–50, 
50–75, 75–99 and >99%. We note estimation of risk as calculated 
via the binomial model saturates at 1 when the size of the gather-
ing n is much larger than 1/p. For example, if p = 0.005 or 1 in 200, 
then events much larger than 200 will saturate near 1; in contrast, if 
p = 0.0001 or 1 in 10,000, then events much larger than 10,000 will 
saturate near 1. As a result, the map will be uniformly ‘light’ (associ-
ated with low risk) when events are sufficiently small and uniformly 
‘dark’ (associated with high risk) when events are sufficiently large. 

This also suggests that displaying risk associated with intermediate 
size events will more effectively communicate differences between 
counties and states.

We used an information-based metric to assess the overall spatial 
heterogeneity of the county-level risk map. We denote the visual map 
information as the sum of –qilog(qi) where qi denotes the fraction of 
counties in the ith risk category where i = 1 to 6 (per the number of 
data bins on the map). Note that small counties are weighted equally 
to large counties, and future work could use a population-weighted 
cartogram to allow users to visualize county areas in proportion 
to their respective populations. Figure 2 quantifies the informa-
tion conveyed associated with visualizations across sizes from 10 to 
1,000 on 1 August 2020. The peak information is found at sizes of 
n = 70 and 142 for ascertainment biases ten and five times, respec-
tively, consistent with the maximum colour divergence at interme-
diate risk sizes. This peak indicates that in early August, whereas 
most small events (of about ten) had relatively low risk everywhere 
and most large events (greater than 1,000 people) had a relatively 
high risk everywhere, the risk associated with intermediate-sized 
events was strongly variable with region. Such variability is critical 
to informing opening decisions.

State-level variation in critical event sizes. The spatiotempo-
ral variation in risk can be viewed a different way: by evaluating 
the location-dependent risk associated with a given event size. 
To do so, we fixed the event size at 50 people and then estimated 
the state-level risk (1 − (1 − p)50). Figure 3 arranges states as well 
as Washington DC and Puerto Rico in order of their relative risk 
effective 15 August 2020 from no. 1 (lowest state-level risk) to no. 
52 (highest state-level risk). In many cases, states with high risk 
levels in May and June experienced declines throughout July and 
August, particularly in the northeast. In contrast, states with lower 
risk levels in May and June experienced upsurges of cases (and risk) 
in July and August, especially in the south. This analysis further 
reinforces the spatiotemporal variation of event risk, as many states 
continue to have elevated risk associated with gatherings of 50 (cor-
responding to a social gathering, bar, restaurant, business event or 
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Fig. 2 | Visualizations of event-associated risk. An information-based index of heterogeneity in risk reveals that intermediate event sizes differentiate 
spatially heterogeneous risk as of 1 August 2020. a, Visual map information as a function of event size using five and ten times ascertainment biases 
for event sizes between 10 and 1,000 people. b, Maps illustrating that most counties appear to have similarly low risk when events are small (fewer 
than ten individuals) or similarly high risk when events large (>1,000 individuals). In contrast, the highest level of heterogeneity in risk is revealed given 
intermediate event sizes (50–150 individuals). Map visualizations use an assumption of five-times ascertainment bias.
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departments nationwide along with a simple statistical model, the 
website is able to capture, calculate and disseminate information 
relevant to decision-making by the public that could help reduce 
risk and new transmission. The risk model addresses the probability 
that an infected person is present at events of different sizes rather 
than estimating the likelihood that someone will become infected at 
that event. Addressing the latter would involve analyses beyond the 
scope of this paper including environmental models and behaviour 
assessment (for example, the need for mask wearing and physical 
distancing22,23).

Static and interactive maps and as well as interactive data dash-
boards, i.e., sets of linked visualizations for data exploration24, have 
proliferated since the start of SARS-CoV-2. Most dashboards allow 
visitors to choose epidemic-associated variables to display: number 
of cases, cases per capita (for example, per 100,000 people), number 
of deaths and deaths per capita, for divisions within a single coun-
try or for countries on a global map. Other behavioural maps have 

approximately two K-12 classes). Specifically, of the 52 locales, we 
identify 51, 49, 44 and 22 that have more than 5, 10, 25 and 50% 
risk, respectively, that one or more individuals with SARS-CoV-2 
are present in events of size 50 effective 15 August 2020 assuming 
ten times ascertainment bias (and 49, 46, 31 and four locales assum-
ing five-times ascertainment bias). This finding indicates that plans 
to reopen schools, colleges and businesses should operate knowing 
that there is an elevated risk of within-event transmission if precau-
tions are not taken; this elevated risk is robust to the choice of either 
ten or five-times ascertainment bias.

Discussion
The COVID-19 Event Risk Assessment Tool provides real-time, 
localized information on risk associated with gatherings. The 
risk highlights the probability that one (or more) individuals 
may be infected with SARS-CoV-2 in events of different sizes. By  
integrating real-time information aggregated via state health 
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Fig. 3 | State-level risk associated with events of size 50 over time. The curves denote risk estimates assuming 5:1 (dark blue) and 10:1 (light blue) 
ascertainment biases. States are ordered as a function of ascending risk level as of 14 August 2020 (last point shown).
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Yet, perhaps the largest driver of uncertainty remains ascertain-
ment bias. Ascertainment bias denotes the number of actual cases 
for each documented case. A recent population-wide CDC sero-
survey found that ascertainment bias ranged from 6–24-fold above 
PCR documented cases in March and April21. Phase 2 serology 
surveys of populations revealed a range in ascertainment bias from 
between two and 14, with a median of nine to ten times29. Rapid, 
population-wide serosurveys are needed to connect case reports to 
localized estimates of ascertainment bias. Integrating such serosur-
veys at state levels or improvements in estimates of ascertainment 
bias using statistical or mechanistic models30,31 could further refine 
variation in event risk estimates.

In closing, by connecting real-time case reports in the context of 
risk associated with events, the website attracted more than 2 mil-
lion visitors in the first 2 months after release of a county-level risk 
tool. This interest showcases the importance of translating epide-
miological statistics into real-world context. In doing so, we hope 
that health departments in the United States and globally consider 
integrating event-associated risk models in current and future pan-
demic responses as part of public awareness campaigns. Indeed, we 
have already extended the same approach to subnational risk esti-
mation in three European countries, Italy, Switzerland and the UK, 
and note that an Italian language risk assessment map for Italy based 
on the current approach is also available at http://covid19eventi.
datainterfaces.org/ and that a Spanish-language risk assessment 
map for Spain based on the current approach is also available at 
https://eventosycovid19.es/. Spatial risk models can help to convey 
heterogeneous risk at local levels, and provide accessible informa-
tion that can help to justify the choice of restrictions on gatherings 
as part of integrative campaigns to control spread. For SARS-CoV-2, 
the open-source and publicly available dashboard highlights the 
fact that there is a >99% risk that one (or more) individuals may be 
infected in groups of 500–1,000, in the vast majority of locations as 
of October 2020; these sizes are consistent with typical enrollment 
at K-12 schools. Hence, it is critical that re-openings of businesses 
and schools devise policies for testing, mask wearing and other 
non-pharmaceutical interventions to ensure that one case does not 
soon become many.

Methods
Probability model. We estimated the probability that one or more individuals 
may have SARS-CoV-2 in events of different sizes via a binomial assumption of 
homogeneous risk. Let p denote the probability that a randomly selected individual 
in a focal population is infected. Hence, the probability that each of n individuals 
is not infected must be (1 − p)n and by extension the probability that one (or more) 
individuals is infected must be 1 − (1 − p)n; we define this as the event gathering 
risk. This formalism was used as the basis for early estimates to communicate risk 
of large gatherings in March 2020 using a scenario-based approach to estimating p 
within the United States17–20.

Circulating case estimate. At a county level, the circulating per-capita probability 
of infection is defined as the estimated number of circulating cases divided by the 
census population. The circulating case counts are defined, operationally, in two 
stages. First, the number of newly documented cases over the past 10 days (d) are 
obtained via data via state departments of public health. Data were aggregated 
and accessed from the New York Times’ repository of COVID-19 data32 using a 
standard application programming interface. The choice of 10 d is consistent with 
CDC guidelines on durations of infectiousness33. Second, the number of newly 
documented cases is multiplied by an ascertainment bias to yield the estimated 
number of circulating cases. The default ascertainment bias is ten times, consistent 
with a median of 9–10 in population-wide serological surveys conducted by the 
Centers for Disease Control and Prevention21,29; with a secondary option of  
five times.

Visualization code. The code to visualize county- and state-level risk was written 
in R and used the R-Shiny Package for map deployment. The input data was 
a county shapefile from the US Census that included all 50 states, the District 
of Columbia and Puerto Rico whose boundaries were generalized using the 
‘rmapshaper’ package. This file was converted to a geojson file for faster drawing. 
The projection was relegated to a web Mercator standard instead of a traditional 
conic projection due to the constraints of the R package. New York City was 

illustrated the reduction in mobility25 or polling results such as atti-
tudes towards masks26. Like these maps, the COVID-19 Event Risk 
Assessment Tool describes the relationship between disease spread 
and behaviour; albeit in an effort to change rather than track behav-
iour. This map is designed as a spatial decision support system27 
that allows individuals to measure the risk of their own actions and 
plan accordingly. It removes the burden of interpreting what case 
rates mean in a quantitative context by directly communicating a 
probability of encountering an infected individual via interactions. 
As a result, individuals can visualize themselves in a group and 
decide whether this risk is worth taking. Risk assessment and toler-
ance varies considerably between individuals. The same risk value 
from the tool (for example, 50% risk) will differentially affect an 
individual’s decision whether to attend an event or hold an event, 
and/or shape their perceptions of events. The intention of the tool 
is to promote informed behaviour by providing a quantity analo-
gous to other likelihoods that may be familiar to users (for example, 
weather forecasts). Follow-up work is necessary to characterize how 
behaviour changed on the basis of engagement.

The interpretable risk levels provided by the COVID-19 Event 
Risk Assessment website encourages visitors to take steps to reduce 
their risk of infection, such as physical distancing, washing hands 
and wearing a mask. By illustrating how risk increases nonlinearly 
with event size, the tool may be particularly useful in encouraging 
large event planners to reschedule or cancel events, move to a safer 
format (for example, outdoors where transmission risk is reduced 
or online when possible), thereby averting potential exposures. As 
such, the website is of particular relevance given the relaxation of 
shelter-in-place orders across the United States, including restric-
tions on gatherings. These relaxations of non-pharmaceutical 
interventions indicate that individuals must remain informed of 
the personal risk involved with everyday activities so as to modify 
their behaviour accordingly. By providing a quantitative tool to con-
vey the ongoing risk of the pandemic, we hope to supplement and 
bolster local public health advisories. The model’s risk estimate is 
designed to display information that is tailored to an individual’s 
immediate locale in a unit of measurement that is relevant and 
interpretable. We note that regardless of the risk values calculated, 
individuals should continue to follow their administrative unit’s 
local public health policies.

There are multiple ways to extend these findings to improve 
local estimates. First, the model uses a binomial probability of 
risk that assumes that risk is homogeneous at county levels. We 
anticipate there will be variation within counties (for example, see 
studies on heterogeneous risk within New York City boroughs28). 
However, because data on cases are reported at the county level, 
further refinement to tract or zip code levels is not yet feasible. In 
addition, the website does not break down risk in terms of other 
socioeconomic correlates, or by race, gender or other personal-
ized factors including the effect of mobility from nearby counties. 
Second, the risk model assumes that individuals are equally likely 
to attend an event, whereas increases in symptomatic case isola-
tion indicates that a fraction of infectious individuals are unlikely 
to attend events (the same applies to those hospitalized, albeit that 
is a much smaller fraction of the total). We note that, despite their 
inclusion in our calculations, symptomatic individuals would prob-
ably already limit their attendance at large gatherings. However, 
the fraction of symptomatic individuals may change with the 
age structure of infections and prevalence of certain comorbidi-
ties (for example, asthma, diabetes, heart disease). Furthermore, 
an individual’s ability to isolate may depend on additional socio-
economic factors and vary over the course of infection. While 
we assume uniform infectiousness across a 10-day period, infec-
tiousness varies between individuals and across time for a single  
individual. Improved estimates of the duration of infectiousness 
could improve these calculations.
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agglomerated as a set of five counties to accommodate the New York Times’ county 
level case data32, which reported New York City as a single region. The risk value 
shown on the county-level map takes into account the county’s new cases for the 
past 10 d, the user’s chosen ascertainment bias (five or ten) from a radio button and 
the user’s chosen case size from a slider with eight discrete increments  
(10, 25, 50, 100, 500, 1,000, 5,000 and 10,000). The map symbology was chosen 
as a univariate colour ramp showing intensity in red, and allows for interactive 
zooming and panning. On hovering over it, a pop up shows the county name and 
the likelihood (in terms of a percentage) that an individual at that event is infected 
with SARS-CoV-2.

Web application. The web application is built using the R-Shiny web development 
framework and deployed as a self-contained Docker container using the 
open-source Shiny-server. Application containers are deployed to a fleet of servers 
hosted at Georgia Institute of Technology, with multiple application instances 
running on each. Users are load-balanced across instances using Nginx. All 
static data used in the application (for example, map HTML files, data used for 
interactive plots) are automatically updated and distributed to each  
application instance.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Population demographics for US states and counties were obtained from the 
publicly available United States Census Bureau American Community Survey for 
2018 (ref. 34). State-level cases were obtained from CovidTracking.com, a project 
developed by Alexis Madrigal and colleagues at The Atlantic4. County-level cases 
were obtained from the New York Times Github site32.

Code availability
The website code is open source and available on Github at https://github.com/
appliedbinf/covid19-event-risk-planner.
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Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection Visualization code: The code to visualize county- and state-level risk was written in R and used the R Shiny Package for map deployment. The 
input data was a county shapefile from the U.S. Census that included all 50 states, the District of Columbia, and Puerto Rico whose boundaries 
were generalized using the ‘rmapshaper’ package. This file was converted to a geojson file for faster drawing. The projection was relegated to 
a web Mercator standard instead of a traditional conic projection due to the constraints of the R package. New York City was agglomerated as 
a set of five counties in order to accommodate the New York Times’ county level case data (New York Times, 2020a), which reported New 
York City as a single region. The risk value shown on the county-level map takes into account the county’s new cases for the past 10 days, the 
user’s chosen ascertainment bias (5 or 10) from a radio button, and the user’s chosen case size from a slider with eight discrete increments 
(10, 25, 50, 100, 500, 1,000, 5,000, and 10,000). The map symbology was chosen as a univariate color ramp showing intensity in red, and 
allows for interactive zooming and panning. Upon hover, a pop up shows the county name and the likelihood (in terms of a percentage) that 
an individual at that event is infected with SARS-CoV-2.  
 
Web application: The web application is built using the R-Shiny web development framework and deployed as a self-contained Docker 
container using the open-source shiny-server. Application containers are deployed to a fleet of servers hosted at Georgia Institute of 
Technology, with multiple application instances running on each. Users are load-balanced across instances using Nginx. All static data used in 
the application (e.g. map HTML files, data used for interactive plots) are automatically updated and distributed to each application instance.  
 
Data Availability: Population demographics for US states and counties were obtained from the publicly available United States Census Bureau 
American Community Survey for 2018 (U.S. Census Bureau, 2019). State-level cases were obtained from CovidTracking.com – a project 
developed by Alexis Madrigal and colleagues at The Atlantic (The Atlantic Monthly Group, 2020). County-level cases were obtained from the 
New York Times github site (New York Times, 2020a).  
 
Code availability: The website code is open source and available on Github: https://github.com/appliedbinf/covid19-event-risk-planner.  
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Data analysis The website code is open source and available on Github: https://github.com/appliedbinf/covid19-event-risk-planner. 

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

Data Availability: Population demographics for US states and counties were obtained from the publicly available United States Census Bureau American Community 
Survey for 2018 (U.S. Census Bureau, 2019). State-level cases were obtained from CovidTracking.com – a project developed by Alexis Madrigal and colleagues at The 
Atlantic (The Atlantic Monthly Group, 2020). County-level cases were obtained from the New York Times github site (New York Times, 2020a). 
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For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Data Availability: Population demographics for US states and counties were obtained from the publicly available United States Census Bureau 
American Community Survey for 2018 (U.S. Census Bureau, 2019). State-level cases were obtained from CovidTracking.com – a project 
developed by Alexis Madrigal and colleagues at The Atlantic (The Atlantic Monthly Group, 2020). County-level cases were obtained from the 
New York Times github site (New York Times, 2020a). 

Data exclusions N/A

Replication N/A

Randomization N/A

Blinding N/A
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We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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