
STing: accurate and ultrafast genomic profiling with exact sequence matches 1

Hector F. Espitia-Navarro1,2,3, Aroon T. Chande1,2,3, Shashwat D. Nagar1,2,3, Heather Smith4, I. King Jordan1,2,3 2

and Lavanya Rishishwar1,2,3 * 3

 4

1School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA 5

2PanAmerican Bioinformatics Institute, Cali, Valle del Cauca 760043, Colombia 6

3Applied Bioinformatics Laboratory, Atlanta, GA 30332, USA 7

4School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332, USA 8

 9

*Corresponding Author: 10

Lavanya Rishishwar 11

950 Atlantic Dr 12

Atlanta, GA 30332-0230 13

678-938-0844 14

lavanya.rishishwar@gatech.edu 15

 16

.CC-BY-NC-ND 4.0 International licenseIt is made available under a
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/855478doi: bioRxiv preprint first posted online Nov. 26, 2019;

http://dx.doi.org/10.1101/855478
http://creativecommons.org/licenses/by-nc-nd/4.0/

Abstract 17

Genome-enabled approaches to molecular epidemiology have become essential to public health agencies 18

and the microbial research community. We developed the algorithm STing to provide turn-key solutions 19

for molecular typing and gene detection directly from next-generation sequence data of microbial 20

pathogens. Our implementation of STing uses an innovative k-mer search strategy that eliminates the 21

computational overhead associated with the time consuming steps of quality control, assembly, and 22

alignment required by more traditional methods. We compared STing to six of the most widely used 23

programs for genome-based molecular typing and demonstrate its ease of use, accuracy, speed, and 24

efficiency. STing shows superior accuracy and performance for standard multilocus sequence typing 25

schemes, along with larger genome-scale typing schemes, and it enables rapid automated detection of 26

antimicrobial resistance and virulence factor genes. We hope that the adoption of STing will help to 27

democratize microbial genomics and thereby maximize its benefit for public health. 28

Main 29

Molecular typing entails the identification of distinct evolutionary lineages (i.e. types) within species of 30

bacterial pathogens; it is an essential element of both outbreak investigation and routine infectious disease 31

surveillance1, 2. Multilocus sequence typing (MLST) was developed as the first sequence-based approach 32

to molecular typing in 19983. Initially, MLST schemes relied on Sanger sequencing of PCR amplicons from 33

fragments of 7-9 housekeeping genes spread throughout the genome. While this approach truly 34

revolutionized molecular epidemiology, it is time consuming and costly compared to current next-35

generation sequencing (NGS) methods. Nevertheless, MLST remains widely used for molecular typing, 36

particularly in light of valuable legacy data relating sequence types (STs) to epidemiological information. 37

Public health agencies increasingly couple NGS characterization of microbial genomes with downstream 38

bioinformatics analysis methods to perform molecular typing. The overhead associated with the 39

bioinformatics methods used for this purpose, in terms of both the required human expertise and 40

computational resources, represents a critical bottleneck that continues to limit the potential impact of 41

microbial genomics on public health. This is particularly true for local public health agency laboratories, 42

which are typically staffed with microbiologists who may not have substantial bioinformatics expertise or 43

ready access to high-performance computational resources. In light of this ongoing challenge, our group 44

is working to develop turn-key solutions for genome-enabled molecular epidemiology, including both 45

molecular typing and the detection of critical antimicrobial resistance (AMR) and virulence factor (VF) 46

genes. Methods of this kind must be easy to use, computationally efficient, fast, and most importantly, 47

highly accurate. 48

We previously developed stringMLST as an alternative approach to genome-enabled molecular typing of 49

bacterial pathogens4. stringMLST relied on k-mer matching between NGS sequence reads and a database 50

of MLST allele sequences, thereby eliminating the need for the sequence quality control, genome assembly, 51

and alignment steps that the first generation of genome-enabled typing algorithms used. It proved to be 52

accurate and fast for traditional MLST schemes, but it did not scale well to the larger genome-scale typing 53

schemes, such as ribosomal MLST (rMLST) or core-genome MLST (cgMLST), which are increasingly used in 54

molecular epidemiology1, 5. Here, we present our new approach to this problem – STing. The STing 55

algorithm is distinguished from its predecessor in several important ways: the efficiency of its code base, 56

.CC-BY-NC-ND 4.0 International licenseIt is made available under a
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/855478doi: bioRxiv preprint first posted online Nov. 26, 2019;

http://dx.doi.org/10.1101/855478
http://creativecommons.org/licenses/by-nc-nd/4.0/

the underlying data structure that is uses, and the scope of its applications. These innovations provide for 57

superior accuracy and performance compared to both stringMLST and other widely used programs for 58

genome-enabled molecular typing. Below, we provide a high-level overview of the STing algorithm, details 59

of which can be found in the Online Methods, and we report on its use across several typing schemes and 60

for automated gene detection. 61

The STing algorithm breaks down (k-merizes) NGS reads into k-mers and then compares read k-mers against 62

an indexed reference sequence database (Figure 1). The speed and efficiency of the algorithm are derived 63

from the nature of the k-mer search strategy used along with the structure of the reference sequence 64

database. For each individual read, a single 65

central k-mer is initially compared against the 66

sequence database. Reads are only fully k-67

merized if there is an initial match between the 68

central k-mer and the database. If there is no 69

match, which occurs for the vast majority of 70

reads, the read is discarded. This results in 71

substantial savings in terms of both the number 72

of reads that need to be k-merized and the 73

number of database search steps. The reference 74

sequence database is indexed as an enhanced 75

suffix array (ESA)6; this enables the efficient 76

representation of entire sequences, as opposed 77

to other k-mer based methods that employ k-78

merized sequences in hash tables. The ESA data 79

structure allows for a single sequence index, 80

independent of k-mer size, whereas the hash 81

table approach necessitates independent 82

indices for each k-mer size. Finally, the ESA data 83

structure facilitates rapid exact k-mer matches 84

between input reads and the indexed database. 85

Figure 1. Schematic representation of the STing algorithm.
The STing algorithm comprises two main phases: Database
indexing (shaded box) – user supplied reference sequences
(allele or gene sequences) are transformed into an
enhanced suffix array (ESA) index for rapid k-mer search
during the sequence variant detection phase; and
Sequence variant detection – reads are k-merized and each
k-mer is searched within the database. For each match
located in the database, a table of frequencies is
maintained for the matched sequence within the database.
These frequencies are then utilized to select candidate
alleles/genes to be present in the samples analyzed. False
positive alleles/genes are filtered out by calculating and
analyzing k-mer depth and sequence length coverage from
the selected candidate sequences. Lastly, predictions of
allelic profile and ST, and presence/absence of genes, are
made and reported. A more detailed flowchart of the
algorithm can be seen in Supplementary Figure 1.

.CC-BY-NC-ND 4.0 International licenseIt is made available under a
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/855478doi: bioRxiv preprint first posted online Nov. 26, 2019;

http://dx.doi.org/10.1101/855478
http://creativecommons.org/licenses/by-nc-nd/4.0/

STing can be run in two modes – sequence typing or gene detection – and typing can be run in fast or 86

sensitive modes. 87

Figure 2. Performance comparison of STing with 6 other sequence typing applications. The fast and sensitive modes of STing are
compared to 6 other contemporary typing applications to measure the accuracy and runtime performance, using three different
typing schemes: (A) the traditional MLST (loci=7) on 40 samples from four bacterial species (10 samples per species: C. jejuni, C.
trachomatis, N. meningitidis, and S. pneumoniae); (B) the ribosomal MLST (rMLST) scheme (loci=53) on 20 samples of N.
meningitidis, and (C) the core genome MLST (cgMLST) scheme (loci=1,605) on 20 samples of N. meningitidis. The typing
applications are color coded based on the algorithmic paradigms that they utilize for performing sequence typing. Performance
is measured in terms of the percentage of correct alleles predicted, the average runtime across each dataset measured in seconds
(displayed in log-scale), and average peak RAM utilization across each dataset measured in megabytes (MB) for MLST, and
gigabytes (GB) for rMLST and cgMLST (both displayed in log-scale).

.CC-BY-NC-ND 4.0 International licenseIt is made available under a
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/855478doi: bioRxiv preprint first posted online Nov. 26, 2019;

http://dx.doi.org/10.1101/855478
http://creativecommons.org/licenses/by-nc-nd/4.0/

We compared STing to six of the most widely used programs for genome-enabled molecular typing, 88

including its predecessor stringMLST (Figure 2). The programs were evaluated for accuracy in terms of the 89

percentage of correct allele predictions, speed in terms of average run time, and efficiency in terms of 90

average maximum RAM consumption. Genome-enabled typing programs can be classified according to 91

the algorithmic paradigm that they use: k-mer only, k-mer plus alignment, read-to-genome mapping, 92

mapping with local assembly, and full assembly (see Supplement for more information). STing uses the 93

minimalist k-mer only approach. STing was run in the fast and sensitive modes for the traditional 94

housekeeping MLST scheme and two larger-scale typing schemes, rMLST and cgMLST. Allele databases for 95

all three typing schemes were taken from the PubMLST database (https://pubmlst.org/). The STing fast 96

mode uses a k-mer matching only strategy, and the sensitive mode includes an additional step whereby 97

false positive matches are excluded based on gaps in the coverage profiles of k-mer matches to allele 98

sequences. 99

Comparisons were performed for 10 samples each across four species that are widely used in MLST and 100

accordingly have diverse MLST databases: Campylobacter jejuni, Chlamydia trachomatis, Neisseria 101

meningitidis, and Streptococcus pneumoniae. STing shows 100% accuracy, in both the fast and sensitive 102

modes, as well as the fastest run time and lowest memory use of any program for MLST (Figure 2A). The 103

results of the same comparisons are broken down for each of the four individual species in Supplementary 104

Figure 2. We also ran STing for MLST across a range of sequence coverage levels in an effort to assess its 105

detection limits and multi-core performance (Supplementary Figure 3). STing performs best at 40x 106

coverage, but it maintains accuracy at 20x with a marginal drop-off at 10x. While STing is designed as a 107

single core application, we found that executing multiple threads of the program allows it to maintain run 108

time up to 40x coverage. This provides for a straightforward way to run STing on numerous genome 109

samples; the MLST accuracy and speed metrics for STing run on a larger dataset of 1,000 N. meningitidis 110

samples are shown in Supplementary Table 1. When this large scale analysis was performed, STing was 111

able to uncover seven samples that were initially scored as erroneous predictions but actually turned out 112

to be mis-annotated on the PubMLST database (Supplementary Table 2). 113

STing also shows the highest accuracy, speed, and efficiency for the four programs that are capable of 114

genome-enabled rMLST typing (Figure 2B). Programs that show as ‘X’ in these comparisons were unable 115

to run for a variety of reasons related to their initial design, the runtime, and database indexing limitations. 116

The program MentaLiST shows marginally higher accuracy, run time, and efficiency for cgMLST compared 117

to STing, which shows the second best metrics for these categories (Figure 2C). However, the utility of 118

MentaLiST, which was designed specifically for cgMLST, is limited by the size of the database that can be 119

indexed. For that reason, it could not be run on the latest rMLST database available from PubMLST. 120

In addition to molecular sequence typing, STing can also be used for automated gene detection directly 121

from NGS reads. The gene detection mode uses a database of genes of interest, and we used databases of 122

AMR and VF genes given their public health relevance. The Comprehensive Antibiotic Resistance Database 123

(CARD https://card.mcmaster.ca/) of 1,434 AMR genes and the Virulence Factors of Pathogenic Bacteria 124

database (VFDB http://www.mgc.ac.cn/VFs/) of 1,443 VF genes were used for this purpose7, 8. STing was 125

used to query the AMR and VF databases with 71 NGS genome datasets for 25 bacterial pathogen species 126

taken from the World Health Organization (WHO) global priority list of antibiotic-resistant bacteria9. STing 127

shows very high accuracy metrics for both AMR and VF detection (Figure 3A), along with fast and efficient 128

performance (Figure 3B). STing can be run in in this way to rapidly detect any genes of interest, which 129

.CC-BY-NC-ND 4.0 International licenseIt is made available under a
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/855478doi: bioRxiv preprint first posted online Nov. 26, 2019;

http://dx.doi.org/10.1101/855478
http://creativecommons.org/licenses/by-nc-nd/4.0/

extends its utility beyond public health genomics. This could be particularly useful for large scale 130

environmental genomics samples, including amplicon-based and metagenome studies. 131

STing was developed to provide turn-key solutions for NGS analysis in support of public health. Despite its 132

lightweight computational footprint, STing is able to perform accurate and ultrafast molecular typing and 133

gene detection. We summarize the features and utility of STing compared to related programs for genome-134

enabled typing in Figure 3C. In addition to its superior accuracy and performance, STing is distinguished by 135

Figure 3. Performance comparison of STing’s Gene Detection program. STing’s Gene Detection program was run on 71 WHO
designated high-priority bacterial genomes (simulated at a read depth of 20x and 40x) that contained gene annotations for 1,434
antimicrobial resistance (AMRs) and 1,443 virulence factors (VFs). (A) Confusion matrices for the detection of AMR genes from
the CARD dataset, and VF genes from the VFDB dataset are shown. (B) The table demonstrates the accuracy and average runtime
performance comparison of STing’s Gene Detection at each sequencing read depth. (C) Feature comparison between STing and
the six applications tested for sequence typing.

.CC-BY-NC-ND 4.0 International licenseIt is made available under a
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/855478doi: bioRxiv preprint first posted online Nov. 26, 2019;

http://dx.doi.org/10.1101/855478
http://creativecommons.org/licenses/by-nc-nd/4.0/

its streamlined algorithmic design, its broad applicability across typing schemes, its ability to support large 136

databases, and its broad use as an automated gene detection utility. 137

Data availability 138

Whole genome sequencing samples used for sequence typing, assemblies used for the limit of detection 139

and multicore performance test, and genomes used for gene detection, are listed with accession numbers 140

in the Supplementary Data. 141

Code availability 142

The source code of STing is available at https://github.com/jordanlab/STing. The modified script 143

implementing the Offline CGE MLST method is available at 144

https://github.com/hspitia/binf_scripts/blob/master/run_MLST.single_thread.py. 145

References 146

1. Maiden, M.C.J. et al. MLST revisited: The gene-by-gene approach to bacterial genomics. Nature 147
Reviews Microbiology 11, 728--736 (2013). 148

2. Espitia-Navarro, H.F., Rishishwar, L., Mayer, L. W., Jordan, I. K. in Microbial Forensics, Edn. 3rd. (ed. 149
B.a.S. Budowle, S. and Morse, S.) (Academic Press, 2019, in press). 150

3. Maiden, M.C. et al. Multilocus sequence typing: a portable approach to the identification of clones 151
within populations of pathogenic microorganisms. Proceedings of the National Academy of 152
Sciences of the United States of America 95, 3140--3145 (1998). 153

4. Gupta, A., Jordan, I.K. & Rishishwar, L. stringMLST: a fast k-mer based tool for multilocus sequence 154
typing. Bioinformatics 33, 119-121 (2017). 155

5. Jolley, K.A. et al. Ribosomal multilocus sequence typing: universal characterization of bacteria from 156
domain to strain. Microbiology 158, 1005-1015 (2012). 157

6. Abouelhoda, M.I., Kurtz, S. & Ohlebusch, E. Replacing suffix trees with enhanced suffix arrays. 158
Journal of Discrete Algorithms 2, 53--86 (2004). 159

7. Jia, B. et al. CARD 2017: expansion and model-centric curation of the comprehensive antibiotic 160
resistance database. Nucleic Acids Res 45, D566-D573 (2017). 161

8. Liu, B., Zheng, D., Jin, Q., Chen, L. & Yang, J. VFDB 2019: a comparative pathogenomic platform with 162
an interactive web interface. Nucleic Acids Res 47, D687-D692 (2019). 163

9. Tacconelli, E. et al. Discovery, research, and development of new antibiotics: the WHO priority list 164
of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis 18, 318-327 (2018). 165

 166

.CC-BY-NC-ND 4.0 International licenseIt is made available under a
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/855478doi: bioRxiv preprint first posted online Nov. 26, 2019;

http://dx.doi.org/10.1101/855478
http://creativecommons.org/licenses/by-nc-nd/4.0/

Online Methods 167

Algorithm overview. Given an input sequence read file from a microbial isolate, STing can accurately 168

identify the specific sequence type (ST), e.g. multilocus sequence type (MLST) or its variants, for the isolate, 169

and what genes of interest are present in its genome. STing accomplishes these tasks by using an exact k-170

mer matching and frequency counting paradigm. STing is implemented in C++ and utilizes two libraries: 171

the SeqAn library10 for the Enhanced Suffix Array (ESA)6 data structure and the gzstream 172

(https://www.cs.unc.edu/Research/compgeom/gzstream/) library for working with gz files. Additionally, 173

STing is prepackaged with an R script for visualization of the results and a Python script for downloading 174

database sequences from PubMLST. The ESA data structure is used for k-mer look-up and comparison 175

purposes. ESAs are a lexicographically sorted array-based data structure, which represent space efficient 176

implementation of the Suffix Trees data structure. For a given set of sequences with a total length of n 177

base pairs (summation of the length of all sequences), an ESA index can be constructed in linear time O(n). 178

ESAs can also be queried for k-mer matches (or substring matches) in linear time. Given a k-mer of length 179

k, we can determine its presence/absence in the database in O(k) time and find all of its z occurrences in 180

O(k+z) time. While Suffix Trees achieve the same time complexity for index construction and k-mer lookup, 181

they take five times more storage space than ESAs. An efficient implementation of a Suffix Tree can use up 182

to 20 bytes per input database character, whereas an equivalent ESA consumes 4 bytes per input database 183

character. Using ESAs for k-mer lookup and comparison allows STing to efficiently scale with large sequence 184

databases. The STing algorithm is divided into three steps: (1) database indexing, (2) sequence typing, and 185

(3) gene detection (Supplementary Figure 1). Each step is described in the following sections. 186

Database indexing. In this step, STing constructs an ESA index that is used during the sequence typing and 187

gene detection modes. For sequence typing, the indexer requires a multi-fasta file with all the observed 188

alleles in a typing scheme and an additional allelic profile file that contains combinations of allele numbers 189

(also referred to as allelic profiles) uniquely mapped to distinct STs. The indexer constructs two ESA indices, 190

one for the allelic sequences (allele index) and one for the profile definitions (profile index). For gene 191

detection, the indexer requires a multi-fasta file with the gene sequences that are to be screened in the 192

input samples. Then, the indexer constructs a single ESA index of all the gene sequences provided (gene 193

index). 194

Sequence typing. In this mode, the typer identifies the ST of a given isolate by using a gene-by-gene 195

approach. The typer utility operates in fast or sensitive execution modes. The sequence typing step 196

comprises six algorithmic steps: (1) read filtering, (2) k-mer counting, (3) candidate sequence selection, (4) 197

depth and coverage calculation, (5) allele calling and ST prediction, and (6) reporting. In the read filtering 198

step (1), the middle k-mer of each sequence is searched within the allele index database. If the middle k-199

mer is not found in the allele index, the read is discarded, otherwise the read is passed on to the next step. 200

The size of the k-mer is chosen in such a way as to minimalize the possibility that using the middle k-mer 201

only results in the loss of useful sequence reads (default k=30); users can change the k-mer size. In the k-202

mer counting step (2), the typer k-merizes each read that passed the filter matching step, and then searches 203

each k-mer from the read against the allele sequence index. For each k-mer match in the allele index, the 204

typer increments a k-mer counter for the matched alleles/loci. Once all of the reads are processed, the 205

typer normalizes the k-mer frequencies by the length of the corresponding allele. In the candidate 206

sequence selection step (3), the algorithm selects the top N alleles that have the maximum normalized k-207

mer frequency for each locus. For the fast execution mode, the default value of N is 1, and for the sensitive 208

.CC-BY-NC-ND 4.0 International licenseIt is made available under a
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/855478doi: bioRxiv preprint first posted online Nov. 26, 2019;

http://dx.doi.org/10.1101/855478
http://creativecommons.org/licenses/by-nc-nd/4.0/

execution mode the default value is 3 and can be configured by the user. In the depth and coverage 209

calculation step (4; only applicable in sensitive mode), the typer reduces the false positives by identifying 210

regions of the candidate alleles that are not covered by any k-mer, and identifying any sharp valleys in the 211

k-mer depth distribution across the candidate allele. This step calculates the number of k-mers that had a 212

match at each base of the top N alleles in each locus. To speed-up this calculation, the typer constructs a 213

smaller index consisting of only the top N candidate alleles, and parses the subset of reads that passed the 214

initial k-mer filter (useful reads). The typer k-merizes the useful reads and records the location (base) of 215

each k-mer in the matched allele of the smaller index. The algorithm calculates the k-mer depth at each 216

base along each allele using the match start positions. The typer then looks for discontinuities in the k-mer 217

depth by checking the k-mer depth ratio of each adjacent position. The application detects a discontinuity 218

if the ratio is outside the range of [1/√2, √2] and sets the k-mer depth as zero for those positions. Finally, 219

the tool calculates the allele coverage as the percentage of allele (i.e., the allele sequence length) that has 220

a non-zero k-mer depth. In the allele calling and ST prediction step (5), STing generates the allelic profile 221

and predicts the corresponding ST of the sample. For the fast mode, the allelic profile is generated from 222

the candidate sequences selected in the previous step (step 3). For the sensitive mode, the allele with the 223

maximum allele coverage for each locus is predicted to be the allele present within the isolate. Here, there 224

are three special cases: (a) in the event that the allele coverage is less than 100%, the detector appends a 225

* character to denote a possible novel allele; (b) in the event of having ties in coverage between alleles, 226

STing calls the allele that has the most uniform k-mer coverage by selecting the one with the minimum k-227

mer depth standard deviation; (c) if a locus has no matching k-mers, the locus is assumed to be absent and 228

an NA allele is assigned as its call. At this step, all the allele calls have been made and an allelic profile has 229

been generated. A look-up operation is performed in the profile index to identify the ST corresponding to 230

the predicted allelic profile. Finally, in the reporting step (6), STing reports the allelic profile, associated ST, 231

and the total number of k-mer matches and reads processed, along with optional information about each 232

allele: normalized counts of k-mer matches, coverage, and average and per-base k-mer depth. 233

Gene detection. The algorithm for this mode is a variant of the sequence typing mode and follows the 234

steps described above closely. The gene detection mode differs from the sequence typing mode in how it 235

selects the candidate sequences. This mode can be divide into five conceptual steps: (1) read filtering, (2) 236

k-mer counting, (3) candidate sequence selection, (4) depth and coverage calculation, and (5) reporting. In 237

the k-mer filtering step (1), the detector searches the middle k-mer of each read within the gene index. If 238

the k-mer fails to match any sequence within the index, the read is discarded, otherwise it is passed on to 239

the next step. In the k-mer counting step (2), the utility proceeds to k-merize the read in its entirety and 240

searches each k-mer in the gene index. A gene-specific k-mer match counter is incremented for each k-241

mer that matches the corresponding gene(s). In addition, the detector also records the start position of 242

the k-mer in the matching gene(s). In the candidate sequence selection step (3), STing selects the gene 243

sequences that have at least one k-mer match as probable genes present in the sample analyzed. In the 244

depth and coverage calculation step (4), similar to the sequence typing mode, STing looks for discontinuities 245

in the k-mer depth by inspecting the (a) the number of bases not covered by any k-mer, and (b) any sharp 246

valleys within the k-mer distribution. Finally, in the reporting step (5), STing determines the 247

presence/absence of genes with k-mer hits along with the percent sequence coverage of each gene 248

identified in the sample. A gene is predicted to be present if its coverage is equal to or greater than a user 249

specified threshold (default = 75%). Otherwise, the gene is predicted to be absent in the sample. STing 250

reports the presence (reported as 1) or absence (reported as 0) of each gene with k-mer matches and the 251

.CC-BY-NC-ND 4.0 International licenseIt is made available under a
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/855478doi: bioRxiv preprint first posted online Nov. 26, 2019;

http://dx.doi.org/10.1101/855478
http://creativecommons.org/licenses/by-nc-nd/4.0/

total number of k-mer matches and reads processed, along with optional information about each gene: 252

normalized counts of k-mer matches, coverage, and average and per-base k-mer depth. 253

Genomic data for sequence typing. We used 1,050 Illumina sequencing read sets of isolates from four 254

bacterial species (Campylobacter jejuni, Chlamydia trachomatis, Neisseria meningitidis, and Streptococcus 255

pneumoniae) retrieved from the PubMLST (https://pubmlst.org/)/EBI ENA (https://www.ebi.ac.uk/ena) 256

database to execute the experiments (Supplementary Data). Using the isolate metadata available on 257

PubMLST, we selected 40 samples from the four species (10 samples each) for the MLST comparative test, 258

and 20 samples of N. meningitidis isolates for the larger typing schemes (rMLST and cgMLST) comparative 259

test. We selected these two datasets trying to capture the diversity of the most common STs of each 260

species in the PubMLST database and preferring recently sequenced isolates. For the large-scale accuracy 261

test, we used a dataset of 1,000 N. meningitidis isolates. 262

Computational environment. We used a machine provided with RedHat Linux SO, 24 cores, and 64 GB of 263

RAM to perform the experiments described in this study. 264

MLST comparative test design. To measure the performance of our application on the traditional seven 265

loci MLST analysis, we compared STing (v0.24.2) in two execution modes, fast and sensitive, along with six 266

applications able to perform sequence typing (stringMLST4, MentaLiST11, Kestrel12, SRST213, ARIBA14, and 267

Offline CGE/DTU; Supplementary Table 3). These applications can be classified into five groups depending 268

on the strategy (algorithmic paradigm) used to predict the sequence types of whole genome sequencing 269

data samples from bacterial isolates: k-mer, k-mer plus alignment, mapping, mapping plus local assembly, 270

and assembly (Supplementary Table 3). For the Offline CGE/DTU application, we used the script 271

runMLST.py15 (https://github.com/widdowquinn/scripts/blob/master/bioinformatics/run_MLST.py), an 272

offline implementation of the original alignment-based MLST method from the Center of Genomic 273

Epidemiology16. This implementation uses multithread BLAST searching for the MLST analysis, as opposed 274

to STing, which is a single thread application. To fairly compare STing with the Offline CGE/DTU 275

implementation, we modified the script runMLST.py to use only one thread for BLAST searches. For each 276

application, we measured the accuracy in terms of the percentage of alleles correctly predicted from the 277

total samples analyzed and the performance in terms of average run time and average peak of RAM 278

required to analyze each of the 40 samples in the dataset. We reported the average run time and average 279

max RAM as the average of three executions of each application per sample analyzed. Kestrel requires the 280

generation of a k-mer counts file before it can be run to predict STs. For this purpose, we used the 281

application KAnalyze17 (v2.0.0) with the parameters as described 12. We reported the average run time of 282

Kestrel as the sum of the average times of KAnalyze and Kestrel for processing each sample and the average 283

RAM consumption as the maximum average peak of RAM consumed by the two applications on each 284

sample. Since the Offline CGE/DTU application requires complete assemblies to predict STs, we assembled 285

each isolate read sample using the application SPAdes18 (v3.13.0) with default parameters. We reported 286

the average runtime as the sum of the average times of SPAdes and Offline CGE/DTU to process each 287

sample, and the average RAM consumption as the maximum average peak of RAM consumed between the 288

two applications during the analysis of each sample. The commands used with each application tested are 289

listed in the supplementary material (Supplementary Table 4). 290

Large-scale MLST accuracy test design. To measure the accuracy of our application using the MLST scheme 291

on a large-scale dataset, we ran STing in fast mode on 1,000 samples of N. meningitidis. We measured the 292

.CC-BY-NC-ND 4.0 International licenseIt is made available under a
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/855478doi: bioRxiv preprint first posted online Nov. 26, 2019;

http://dx.doi.org/10.1101/855478
http://creativecommons.org/licenses/by-nc-nd/4.0/

accuracy in terms of the percentage of STs correctly predicted from the total samples analyzed, and the 293

performance in terms of average run time and average peak RAM required to analyze each of the 1,000 294

samples of the dataset. We reported the average run time and average maximum RAM as the average of 295

five executions of the application per sample analyzed. 296

Limit of detection and performance on single and multicore environments test design. We evaluated the 297

minimum sequencing depth required for correctly predicting STs on whole genome sequencing samples 298

from bacterial isolates. We retrieved 1,306 assemblies of Campylobacter jejuni (n=581) and Neisseria 299

meningitidis (n=725) with known MLST information from the GenBank database 300

(https://www.ncbi.nlm.nih.gov/genbank/) (Supplementary File 1). Then, we simulated Illumina paired-end 301

reads – HiSeq 2500, 2x150 bp, 500bp of average fragment length, with 10 as the fragment size standard 302

deviation – from each genome at seven sequencing depths (1, 3, 5, 10, 15, 20, and 40x) using the software 303

ART19 (v2.5.8). We executed STing (fast mode) over each generated sample to measure the accuracy in 304

terms of the percentage of correct STs and alleles predicted from the total samples at each sequencing 305

depth. We also evaluated the performance of STing in multicore environments. We executed 20 parallel 306

instances of STing to analyze the 1,306 samples and measured the average time required to process the 307

complete dataset at each sequencing depth. 308

Large-scale sequence type schemes comparison test design. To evaluate the scalability, accuracy, and 309

performance of our application on large-scale sequence typing schemes, we compared STing (fast and 310

sensitive modes) on 20 samples of N. meningitidis against other sequence typing applications using the 311

rMLST (loci=53) and the cgMLST (loci=1,605) schemes. We used three applications (stringMLST, SRST2, and 312

Offline CGE) for rMLST, and three applications (stringMLST, MentaLiST, and Offline CGE) for cgMLST, which 313

were able to execute the sequence typing analysis successfully using these larger schemes. For each 314

application and typing scheme, we measured the accuracy in terms of the percentage of correct allele 315

predictions from the total alleles of the tested samples and the performance in terms of the average of run 316

time and maximum peak of RAM required to process each sample from the dataset. 317

Gene detection test design. We evaluated the ability of STing to predict the presence/absence of 318

sequences of interest in NGS read samples by detecting antimicrobial resistance (AMR) genes and virulence 319

factor (VF) genes in simulated Illumina read datasets. We retrieved 71 assemblies from the GenBank 320

database that correspond to 25 species listed in the World Health Organization priority list of antibiotic-321

resistant bacteria and tuberculosis9 (Supplementary Data). Then, we simulated Illumina paired-end reads 322

– HiSeq 2500, 2x150bp, 500bp of average fragment size, with 10 as the fragment size standard deviation – 323

from each genome at 20x and 40x sequencing depth, using the software ART. For the AMR gene detection 324

test, we used 1,434 AMR genes available in the Comprehensive Antibiotic Resistance Database (CARD, 325

v2.0.2)7. For the VF gene detection test, we used 1,443 genes from the virulence factor database (VFDB, 326

release date 03-22-2019)8. In both tests, we first defined the presence/absence of each gene in each 327

genome using BLASTn (v2.2.28+)20, as a ground-truth for assessing STing’s performance. To perform a fair 328

comparison with STing’s gene detection, which is based is based on exact pattern matching, we defined a 329

cutoff of 100% for identity and query (gene) coverage in BLASTn to consider a gene as present in a genome, 330

i.e., if the gene is perfectly contained in the genome. Then, we built databases on STing for each gene set 331

of interest (CADR and VFDB), and executed the respective gene detection analysis on each genome-derived 332

read set at each sequencing depth, using a threshold of 100% for gene coverage to consider a gene as 333

.CC-BY-NC-ND 4.0 International licenseIt is made available under a
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/855478doi: bioRxiv preprint first posted online Nov. 26, 2019;

http://dx.doi.org/10.1101/855478
http://creativecommons.org/licenses/by-nc-nd/4.0/

present in a sample. Finally, we evaluated the performance of detection in terms of sensitivity, specificity, 334

precision, and accuracy, which are defined as follows: 335

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
; 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =

𝑇𝑁

𝑇𝑁+𝐹𝑃
; 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑃

𝑇𝑃+𝐹𝑃
; 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
; 336

where, 𝑇𝑃 = true positives, 𝑇𝑁 = true negatives, 𝐹𝑃 = false positives, and 𝐹𝑁 = false negatives. 337

References 338

4. Gupta, A., Jordan, I.K. & Rishishwar, L. stringMLST: a fast k-mer based tool for multilocus sequence 339
typing. Bioinformatics 33, 119-121 (2017). 340

6. Abouelhoda, M.I., Kurtz, S. & Ohlebusch, E. Replacing suffix trees with enhanced suffix arrays. 341
Journal of Discrete Algorithms 2, 53--86 (2004). 342

7. Jia, B. et al. CARD 2017: expansion and model-centric curation of the comprehensive antibiotic 343
resistance database. Nucleic Acids Res 45, D566-D573 (2017). 344

8. Liu, B., Zheng, D., Jin, Q., Chen, L. & Yang, J. VFDB 2019: a comparative pathogenomic platform with 345
an interactive web interface. Nucleic Acids Res 47, D687-D692 (2019). 346

9. Tacconelli, E. et al. Discovery, research, and development of new antibiotics: the WHO priority list 347
of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis 18, 318-327 (2018). 348

10. Reinert, K. et al. The SeqAn C++ template library for efficient sequence analysis: A resource for 349
programmers. J Biotechnol 261, 157-168 (2017). 350

11. Feijao, P. et al. MentaLiST - A fast MLST caller for large MLST schemes. Microbial genomics 4, 1--8 351
(2018). 352

12. Audano, P.A., Ravishankar, S. & Vannberg, F.O. Mapping-free variant calling using haplotype 353
reconstruction from k-mer frequencies. Bioinformatics 34, 1659-1665 (2018). 354

13. Inouye, M. et al. SRST2: Rapid genomic surveillance for public health and hospital microbiology 355
labs. Genome Medicine 6, 90 (2014). 356

14. Hunt, M., Mather, A.E. & Sanchez-Buso, L. ARIBA: rapid antimicrobial resistance genotyping directly 357
from sequencing reads. Microbial Genomics 3 (2017). 358

15. Pritchard, L. Python script for executing BLASTn-based traditional 7-loci MLST analysis. (GitHub, 359
2014). 360

16. Larsen, M.V. et al. Multilocus sequence typing of total-genome-sequenced bacteria. J Clin Microbiol 361
50, 1355-1361 (2012). 362

17. Audano, P. & Vannberg, F. KAnalyze: a fast versatile pipelined k-mer toolkit. Bioinformatics 30, 363
2070-2072 (2014). 364

18. Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell 365
sequencing. J Comput Biol 19, 455-477 (2012). 366

19. Huang, W., Li, L., Myers, J.R. & Marth, G.T. ART: a next-generation sequencing read simulator. 367
Bioinformatics 28, 593-594 (2012). 368

20. Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinformatics 10, 421 (2009). 369

 370

.CC-BY-NC-ND 4.0 International licenseIt is made available under a
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/855478doi: bioRxiv preprint first posted online Nov. 26, 2019;

http://dx.doi.org/10.1101/855478
http://creativecommons.org/licenses/by-nc-nd/4.0/

