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Abstract 17 

Genome-enabled approaches to molecular epidemiology have become essential to public health agencies 18 

and the microbial research community.  We developed the algorithm STing to provide turn-key solutions 19 

for molecular typing and gene detection directly from next-generation sequence data of microbial 20 

pathogens.  Our implementation of STing uses an innovative k-mer search strategy that eliminates the 21 

computational overhead associated with the time consuming steps of quality control, assembly, and 22 

alignment required by more traditional methods.  We compared STing to six of the most widely used 23 

programs for genome-based molecular typing and demonstrate its ease of use, accuracy, speed, and 24 

efficiency.  STing shows superior accuracy and performance for standard multilocus sequence typing 25 

schemes, along with larger genome-scale typing schemes, and it enables rapid automated detection of 26 

antimicrobial resistance and virulence factor genes.  We hope that the adoption of STing will help to 27 

democratize microbial genomics and thereby maximize its benefit for public health.   28 

Main 29 

Molecular typing entails the identification of distinct evolutionary lineages (i.e. types) within species of 30 

bacterial pathogens; it is an essential element of both outbreak investigation and routine infectious disease 31 

surveillance1, 2.  Multilocus sequence typing (MLST) was developed as the first sequence-based approach 32 

to molecular typing in 19983.  Initially, MLST schemes relied on Sanger sequencing of PCR amplicons from 33 

fragments of 7-9 housekeeping genes spread throughout the genome.  While this approach truly 34 

revolutionized molecular epidemiology, it is time consuming and costly compared to current next-35 

generation sequencing (NGS) methods.  Nevertheless, MLST remains widely used for molecular typing, 36 

particularly in light of valuable legacy data relating sequence types (STs) to epidemiological information. 37 

Public health agencies increasingly couple NGS characterization of microbial genomes with downstream 38 

bioinformatics analysis methods to perform molecular typing.  The overhead associated with the 39 

bioinformatics methods used for this purpose, in terms of both the required human expertise and 40 

computational resources, represents a critical bottleneck that continues to limit the potential impact of 41 

microbial genomics on public health.  This is particularly true for local public health agency laboratories, 42 

which are typically staffed with microbiologists who may not have substantial bioinformatics expertise or 43 

ready access to high-performance computational resources.  In light of this ongoing challenge, our group 44 

is working to develop turn-key solutions for genome-enabled molecular epidemiology, including both 45 

molecular typing and the detection of critical antimicrobial resistance (AMR) and virulence factor (VF) 46 

genes.  Methods of this kind must be easy to use, computationally efficient, fast, and most importantly, 47 

highly accurate. 48 

We previously developed stringMLST as an alternative approach to genome-enabled molecular typing of 49 

bacterial pathogens4.  stringMLST relied on k-mer matching between NGS sequence reads and a database 50 

of MLST allele sequences, thereby eliminating the need for the sequence quality control, genome assembly, 51 

and alignment steps that the first generation of genome-enabled typing algorithms used.  It proved to be 52 

accurate and fast for traditional MLST schemes, but it did not scale well to the larger genome-scale typing 53 

schemes, such as ribosomal MLST (rMLST) or core-genome MLST (cgMLST), which are increasingly used in 54 

molecular epidemiology1, 5.  Here, we present our new approach to this problem – STing.  The STing 55 

algorithm is distinguished from its predecessor in several important ways: the efficiency of its code base, 56 
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the underlying data structure that is uses, and the scope of its applications.  These innovations provide for 57 

superior accuracy and performance compared to both stringMLST and other widely used programs for 58 

genome-enabled molecular typing.  Below, we provide a high-level overview of the STing algorithm, details 59 

of which can be found in the Online Methods, and we report on its use across several typing schemes and 60 

for automated gene detection. 61 

The STing algorithm breaks down (k-merizes) NGS reads into k-mers and then compares read k-mers against 62 

an indexed reference sequence database (Figure 1).  The speed and efficiency of the algorithm are derived 63 

from the nature of the k-mer search strategy used along with the structure of the reference sequence 64 

database.  For each individual read, a single 65 

central k-mer is initially compared against the 66 

sequence database.  Reads are only fully k-67 

merized if there is an initial match between the 68 

central k-mer and the database.  If there is no 69 

match, which occurs for the vast majority of 70 

reads, the read is discarded.  This results in 71 

substantial savings in terms of both the number 72 

of reads that need to be k-merized and the 73 

number of database search steps.  The reference 74 

sequence database is indexed as an enhanced 75 

suffix array (ESA)6; this enables the efficient 76 

representation of entire sequences, as opposed 77 

to other k-mer based methods that employ k-78 

merized sequences in hash tables.  The ESA data 79 

structure allows for a single sequence index, 80 

independent of k-mer size, whereas the hash 81 

table approach necessitates independent 82 

indices for each k-mer size.  Finally, the ESA data 83 

structure facilitates rapid exact k-mer matches 84 

between input reads and the indexed database.  85 

Figure 1. Schematic representation of the STing algorithm. 
The STing algorithm comprises two main phases: Database 
indexing (shaded box) – user supplied reference sequences 
(allele or gene sequences) are transformed into an 
enhanced suffix array (ESA) index for rapid k-mer search 
during the sequence variant detection phase; and 
Sequence variant detection – reads are k-merized and each 
k-mer is searched within the database.  For each match 
located in the database, a table of frequencies is 
maintained for the matched sequence within the database.  
These frequencies are then utilized to select candidate 
alleles/genes to be present in the samples analyzed.  False 
positive alleles/genes are filtered out by calculating and 
analyzing k-mer depth and sequence length coverage from 
the selected candidate sequences.  Lastly, predictions of 
allelic profile and ST, and presence/absence of genes, are 
made and reported.  A more detailed flowchart of the 
algorithm can be seen in Supplementary Figure 1.  

 

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/855478doi: bioRxiv preprint first posted online Nov. 26, 2019; 

http://dx.doi.org/10.1101/855478
http://creativecommons.org/licenses/by-nc-nd/4.0/


STing can be run in two modes – sequence typing or gene detection – and typing can be run in fast or 86 

sensitive modes. 87 

Figure 2. Performance comparison of STing with 6 other sequence typing applications.  The fast and sensitive modes of STing are 
compared to 6 other contemporary typing applications to measure the accuracy and runtime performance, using three different 
typing schemes: (A) the traditional MLST (loci=7) on 40 samples from four bacterial species (10 samples per species: C. jejuni, C. 
trachomatis, N. meningitidis, and S. pneumoniae); (B) the ribosomal MLST (rMLST) scheme (loci=53) on 20 samples of N. 
meningitidis, and (C) the core genome MLST (cgMLST) scheme (loci=1,605) on 20 samples of N. meningitidis. The typing 
applications are color coded based on the algorithmic paradigms that they utilize for performing sequence typing.  Performance 
is measured in terms of the percentage of correct alleles predicted, the average runtime across each dataset measured in seconds 
(displayed in log-scale), and average peak RAM utilization across each dataset measured in megabytes (MB) for MLST, and 
gigabytes (GB) for rMLST and cgMLST (both displayed in log-scale). 
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We compared STing to six of the most widely used programs for genome-enabled molecular typing, 88 

including its predecessor stringMLST (Figure 2).  The programs were evaluated for accuracy in terms of the 89 

percentage of correct allele predictions, speed in terms of average run time, and efficiency in terms of 90 

average maximum RAM consumption.  Genome-enabled typing programs can be classified according to 91 

the algorithmic paradigm that they use: k-mer only, k-mer plus alignment, read-to-genome mapping, 92 

mapping with local assembly, and full assembly (see Supplement for more information).  STing uses the 93 

minimalist k-mer only approach.  STing was run in the fast and sensitive modes for the traditional 94 

housekeeping MLST scheme and two larger-scale typing schemes, rMLST and cgMLST.  Allele databases for 95 

all three typing schemes were taken from the PubMLST database (https://pubmlst.org/).  The STing fast 96 

mode uses a k-mer matching only strategy, and the sensitive mode includes an additional step whereby 97 

false positive matches are excluded based on gaps in the coverage profiles of k-mer matches to allele 98 

sequences. 99 

Comparisons were performed for 10 samples each across four species that are widely used in MLST and 100 

accordingly have diverse MLST databases: Campylobacter jejuni, Chlamydia trachomatis, Neisseria 101 

meningitidis, and Streptococcus pneumoniae.  STing shows 100% accuracy, in both the fast and sensitive 102 

modes, as well as the fastest run time and lowest memory use of any program for MLST (Figure 2A).  The 103 

results of the same comparisons are broken down for each of the four individual species in Supplementary 104 

Figure 2.  We also ran STing for MLST across a range of sequence coverage levels in an effort to assess its 105 

detection limits and multi-core performance (Supplementary Figure 3).  STing performs best at 40x 106 

coverage, but it maintains accuracy at 20x with a marginal drop-off at 10x.  While STing is designed as a 107 

single core application, we found that executing multiple threads of the program allows it to maintain run 108 

time up to 40x coverage.  This provides for a straightforward way to run STing on numerous genome 109 

samples; the MLST accuracy and speed metrics for STing run on a larger dataset of 1,000 N. meningitidis 110 

samples are shown in Supplementary Table 1.  When this large scale analysis was performed, STing was 111 

able to uncover seven samples that were initially scored as erroneous predictions but actually turned out 112 

to be mis-annotated on the PubMLST database (Supplementary Table 2). 113 

STing also shows the highest accuracy, speed, and efficiency for the four programs that are capable of 114 

genome-enabled rMLST typing (Figure 2B).  Programs that show as ‘X’ in these comparisons were unable 115 

to run for a variety of reasons related to their initial design, the runtime, and database indexing limitations.  116 

The program MentaLiST shows marginally higher accuracy, run time, and efficiency for cgMLST compared 117 

to STing, which shows the second best metrics for these categories (Figure 2C).  However, the utility of 118 

MentaLiST, which was designed specifically for cgMLST, is limited by the size of the database that can be 119 

indexed.  For that reason, it could not be run on the latest rMLST database available from PubMLST.   120 

In addition to molecular sequence typing, STing can also be used for automated gene detection directly 121 

from NGS reads.  The gene detection mode uses a database of genes of interest, and we used databases of 122 

AMR and VF genes given their public health relevance.  The Comprehensive Antibiotic Resistance Database 123 

(CARD https://card.mcmaster.ca/) of 1,434 AMR genes and the Virulence Factors of Pathogenic Bacteria 124 

database (VFDB http://www.mgc.ac.cn/VFs/) of 1,443 VF genes were used for this purpose7, 8.  STing was 125 

used to query the AMR and VF databases with 71 NGS genome datasets for 25 bacterial pathogen species 126 

taken from the World Health Organization (WHO) global priority list of antibiotic-resistant bacteria9.  STing 127 

shows very high accuracy metrics for both AMR and VF detection (Figure 3A), along with fast and efficient 128 

performance (Figure 3B).  STing can be run in in this way to rapidly detect any genes of interest, which 129 
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extends its utility beyond public health genomics.  This could be particularly useful for large scale 130 

environmental genomics samples, including amplicon-based and metagenome studies. 131 

STing was developed to provide turn-key solutions for NGS analysis in support of public health.  Despite its 132 

lightweight computational footprint, STing is able to perform accurate and ultrafast molecular typing and 133 

gene detection.  We summarize the features and utility of STing compared to related programs for genome-134 

enabled typing in Figure 3C.  In addition to its superior accuracy and performance, STing is distinguished by 135 

Figure 3.  Performance comparison of STing’s Gene Detection program.  STing’s Gene Detection program was run on 71 WHO 
designated high-priority bacterial genomes (simulated at a read depth of 20x and 40x) that contained gene annotations for 1,434 
antimicrobial resistance (AMRs) and 1,443 virulence factors (VFs).  (A) Confusion matrices for the detection of AMR genes from 
the CARD dataset, and VF genes from the VFDB dataset are shown.  (B) The table demonstrates the accuracy and average runtime 
performance comparison of STing’s Gene Detection at each sequencing read depth.  (C) Feature comparison between STing and 
the six applications tested for sequence typing. 
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its streamlined algorithmic design, its broad applicability across typing schemes, its ability to support large 136 

databases, and its broad use as an automated gene detection utility. 137 

Data availability 138 

Whole genome sequencing samples used for sequence typing, assemblies used for the limit of detection 139 

and multicore performance test, and genomes used for gene detection, are listed with accession numbers 140 

in the Supplementary Data. 141 

Code availability 142 

The source code of STing is available at https://github.com/jordanlab/STing. The modified script 143 

implementing the Offline CGE MLST method is available at 144 

https://github.com/hspitia/binf_scripts/blob/master/run_MLST.single_thread.py.  145 
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Online Methods 167 

Algorithm overview.   Given an input sequence read file from a microbial isolate, STing can accurately 168 

identify the specific sequence type (ST), e.g. multilocus sequence type (MLST) or its variants, for the isolate, 169 

and what genes of interest are present in its genome.  STing accomplishes these tasks by using an exact k-170 

mer matching and frequency counting paradigm.  STing is implemented in C++ and utilizes two libraries: 171 

the SeqAn library10 for the Enhanced Suffix Array (ESA)6 data structure and the gzstream 172 

(https://www.cs.unc.edu/Research/compgeom/gzstream/) library for working with gz files.  Additionally, 173 

STing is prepackaged with an R script for visualization of the results and a Python script for downloading 174 

database sequences from PubMLST.  The ESA data structure is used for k-mer look-up and comparison 175 

purposes.  ESAs are a lexicographically sorted array-based data structure, which represent space efficient 176 

implementation of the Suffix Trees data structure.  For a given set of sequences with a total length of n 177 

base pairs (summation of the length of all sequences), an ESA index can be constructed in linear time O(n).  178 

ESAs can also be queried for k-mer matches (or substring matches) in linear time.  Given a k-mer of length 179 

k, we can determine its presence/absence in the database in O(k) time and find all of its z occurrences in 180 

O(k+z) time.  While Suffix Trees achieve the same time complexity for index construction and k-mer lookup, 181 

they take five times more storage space than ESAs.  An efficient implementation of a Suffix Tree can use up 182 

to 20 bytes per input database character, whereas an equivalent ESA consumes 4 bytes per input database 183 

character.  Using ESAs for k-mer lookup and comparison allows STing to efficiently scale with large sequence 184 

databases.  The STing algorithm is divided into three steps: (1) database indexing, (2) sequence typing, and 185 

(3) gene detection (Supplementary Figure 1).  Each step is described in the following sections.   186 

Database indexing.  In this step, STing constructs an ESA index that is used during the sequence typing and 187 

gene detection modes.  For sequence typing, the indexer requires a multi-fasta file with all the observed 188 

alleles in a typing scheme and an additional allelic profile file that contains combinations of allele numbers 189 

(also referred to as allelic profiles) uniquely mapped to distinct STs.  The indexer constructs two ESA indices, 190 

one for the allelic sequences (allele index) and one for the profile definitions (profile index).  For gene 191 

detection, the indexer requires a multi-fasta file with the gene sequences that are to be screened in the 192 

input samples.  Then, the indexer constructs a single ESA index of all the gene sequences provided (gene 193 

index). 194 

Sequence typing.  In this mode, the typer identifies the ST of a given isolate by using a gene-by-gene 195 

approach.  The typer utility operates in fast or sensitive execution modes.  The sequence typing step 196 

comprises six algorithmic steps: (1) read filtering, (2) k-mer counting, (3) candidate sequence selection, (4) 197 

depth and coverage calculation, (5) allele calling and ST prediction, and (6) reporting.  In the read filtering 198 

step (1), the middle k-mer of each sequence is searched within the allele index database.  If the middle k-199 

mer is not found in the allele index, the read is discarded, otherwise the read is passed on to the next step.  200 

The size of the k-mer is chosen in such a way as to minimalize the possibility that using the middle k-mer 201 

only results in the loss of useful sequence reads (default k=30); users can change the k-mer size.  In the k-202 

mer counting step (2), the typer k-merizes each read that passed the filter matching step, and then searches 203 

each k-mer from the read against the allele sequence index.  For each k-mer match in the allele index, the 204 

typer increments a k-mer counter for the matched alleles/loci.  Once all of the reads are processed, the 205 

typer normalizes the k-mer frequencies by the length of the corresponding allele.  In the candidate 206 

sequence selection step (3), the algorithm selects the top N alleles that have the maximum normalized k-207 

mer frequency for each locus.  For the fast execution mode, the default value of N is 1, and for the sensitive 208 
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execution mode the default value is 3 and can be configured by the user.  In the depth and coverage 209 

calculation step (4; only applicable in sensitive mode), the typer reduces the false positives by identifying 210 

regions of the candidate alleles that are not covered by any k-mer, and identifying any sharp valleys in the 211 

k-mer depth distribution across the candidate allele.  This step calculates the number of k-mers that had a 212 

match at each base of the top N alleles in each locus.  To speed-up this calculation, the typer constructs a 213 

smaller index consisting of only the top N candidate alleles, and parses the subset of reads that passed the 214 

initial k-mer filter (useful reads).  The typer k-merizes the useful reads and records the location (base) of 215 

each k-mer in the matched allele of the smaller index.  The algorithm calculates the k-mer depth at each 216 

base along each allele using the match start positions.  The typer then looks for discontinuities in the k-mer 217 

depth by checking the k-mer depth ratio of each adjacent position.  The application detects a discontinuity 218 

if the ratio is outside the range of [1/√2, √2] and sets the k-mer depth as zero for those positions.  Finally, 219 

the tool calculates the allele coverage as the percentage of allele (i.e., the allele sequence length) that has 220 

a non-zero k-mer depth.  In the allele calling and ST prediction step (5), STing generates the allelic profile 221 

and predicts the corresponding ST of the sample.  For the fast mode, the allelic profile is generated from 222 

the candidate sequences selected in the previous step (step 3).  For the sensitive mode, the allele with the 223 

maximum allele coverage for each locus is predicted to be the allele present within the isolate.  Here, there 224 

are three special cases: (a) in the event that the allele coverage is less than 100%, the detector appends a 225 

* character to denote a possible novel allele; (b) in the event of having ties in coverage between alleles, 226 

STing calls the allele that has the most uniform k-mer coverage by selecting the one with the minimum k-227 

mer depth standard deviation; (c) if a locus has no matching k-mers, the locus is assumed to be absent and 228 

an NA allele is assigned as its call.  At this step, all the allele calls have been made and an allelic profile has 229 

been generated.  A look-up operation is performed in the profile index to identify the ST corresponding to 230 

the predicted allelic profile.  Finally, in the reporting step (6), STing reports the allelic profile, associated ST, 231 

and the total number of k-mer matches and reads processed, along with optional information about each 232 

allele: normalized counts of k-mer matches, coverage, and average and per-base k-mer depth. 233 

Gene detection.  The algorithm for this mode is a variant of the sequence typing mode and follows the 234 

steps described above closely.  The gene detection mode differs from the sequence typing mode in how it 235 

selects the candidate sequences.  This mode can be divide into five conceptual steps: (1) read filtering, (2) 236 

k-mer counting, (3) candidate sequence selection, (4) depth and coverage calculation, and (5) reporting.  In 237 

the k-mer filtering step (1), the detector searches the middle k-mer of each read within the gene index.  If 238 

the k-mer fails to match any sequence within the index, the read is discarded, otherwise it is passed on to 239 

the next step.  In the k-mer counting step (2), the utility proceeds to k-merize the read in its entirety and 240 

searches each k-mer in the gene index.  A gene-specific k-mer match counter is incremented for each k-241 

mer that matches the corresponding gene(s).  In addition, the detector also records the start position of 242 

the k-mer in the matching gene(s).  In the candidate sequence selection step (3), STing selects the gene 243 

sequences that have at least one k-mer match as probable genes present in the sample analyzed.  In the 244 

depth and coverage calculation step (4), similar to the sequence typing mode, STing looks for discontinuities 245 

in the k-mer depth by inspecting the (a) the number of bases not covered by any k-mer, and (b) any sharp 246 

valleys within the k-mer distribution.  Finally, in the reporting step (5), STing determines the 247 

presence/absence of genes with k-mer hits along with the percent sequence coverage of each gene 248 

identified in the sample.  A gene is predicted to be present if its coverage is equal to or greater than a user 249 

specified threshold (default = 75%).  Otherwise, the gene is predicted to be absent in the sample.  STing 250 

reports the presence (reported as 1) or absence (reported as 0) of each gene with k-mer matches and the 251 
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total number of k-mer matches and reads processed, along with optional information about each gene: 252 

normalized counts of k-mer matches, coverage, and average and per-base k-mer depth. 253 

Genomic data for sequence typing.  We used 1,050 Illumina sequencing read sets of isolates from four 254 

bacterial species (Campylobacter jejuni, Chlamydia trachomatis, Neisseria meningitidis, and Streptococcus 255 

pneumoniae) retrieved from the PubMLST (https://pubmlst.org/)/EBI ENA (https://www.ebi.ac.uk/ena) 256 

database to execute the experiments (Supplementary Data).  Using the isolate metadata available on 257 

PubMLST, we selected 40 samples from the four species (10 samples each) for the MLST comparative test, 258 

and 20 samples of N. meningitidis isolates for the larger typing schemes (rMLST and cgMLST) comparative 259 

test.  We selected these two datasets trying to capture the diversity of the most common STs of each 260 

species in the PubMLST database and preferring recently sequenced isolates.  For the large-scale accuracy 261 

test, we used a dataset of 1,000 N. meningitidis isolates. 262 

Computational environment.  We used a machine provided with RedHat Linux SO, 24 cores, and 64 GB of 263 

RAM to perform the experiments described in this study. 264 

MLST comparative test design.  To measure the performance of our application on the traditional seven 265 

loci MLST analysis, we compared STing (v0.24.2) in two execution modes, fast and sensitive, along with six 266 

applications able to perform sequence typing (stringMLST4, MentaLiST11, Kestrel12, SRST213, ARIBA14, and 267 

Offline CGE/DTU; Supplementary Table 3).  These applications can be classified into five groups depending 268 

on the strategy (algorithmic paradigm) used to predict the sequence types of whole genome sequencing 269 

data samples from bacterial isolates: k-mer, k-mer plus alignment, mapping, mapping plus local assembly, 270 

and assembly (Supplementary Table 3).  For the Offline CGE/DTU application, we used the script 271 

runMLST.py15 (https://github.com/widdowquinn/scripts/blob/master/bioinformatics/run_MLST.py), an 272 

offline implementation of the original alignment-based MLST method from the Center of Genomic 273 

Epidemiology16.  This implementation uses multithread BLAST searching for the MLST analysis, as opposed 274 

to STing, which is a single thread application.  To fairly compare STing with the Offline CGE/DTU 275 

implementation, we modified the script runMLST.py to use only one thread for BLAST searches.  For each 276 

application, we measured the accuracy in terms of the percentage of alleles correctly predicted from the 277 

total samples analyzed and the performance in terms of average run time and average peak of RAM 278 

required to analyze each of the 40 samples in the dataset.  We reported the average run time and average 279 

max RAM as the average of three executions of each application per sample analyzed.  Kestrel requires the 280 

generation of a k-mer counts file before it can be run to predict STs.  For this purpose, we used the 281 

application KAnalyze17 (v2.0.0) with the parameters as described 12.  We reported the average run time of 282 

Kestrel as the sum of the average times of KAnalyze and Kestrel for processing each sample and the average 283 

RAM consumption as the maximum average peak of RAM consumed by the two applications on each 284 

sample.  Since the Offline CGE/DTU application requires complete assemblies to predict STs, we assembled 285 

each isolate read sample using the application SPAdes18 (v3.13.0) with default parameters.  We reported 286 

the average runtime as the sum of the average times of SPAdes and Offline CGE/DTU to process each 287 

sample, and the average RAM consumption as the maximum average peak of RAM consumed between the 288 

two applications during the analysis of each sample.  The commands used with each application tested are 289 

listed in the supplementary material (Supplementary Table 4). 290 

Large-scale MLST accuracy test design.  To measure the accuracy of our application using the MLST scheme 291 

on a large-scale dataset, we ran STing in fast mode on 1,000 samples of N. meningitidis.  We measured the 292 
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accuracy in terms of the percentage of STs correctly predicted from the total samples analyzed, and the 293 

performance in terms of average run time and average peak RAM required to analyze each of the 1,000 294 

samples of the dataset.  We reported the average run time and average maximum RAM as the average of 295 

five executions of the application per sample analyzed. 296 

Limit of detection and performance on single and multicore environments test design.  We evaluated the 297 

minimum sequencing depth required for correctly predicting STs on whole genome sequencing samples 298 

from bacterial isolates.  We retrieved 1,306 assemblies of Campylobacter jejuni (n=581) and Neisseria 299 

meningitidis (n=725) with known MLST information from the GenBank database 300 

(https://www.ncbi.nlm.nih.gov/genbank/) (Supplementary File 1).  Then, we simulated Illumina paired-end 301 

reads – HiSeq 2500, 2x150 bp, 500bp of average fragment length, with 10 as the fragment size standard 302 

deviation – from each genome at seven sequencing depths (1, 3, 5, 10, 15, 20, and 40x) using the software 303 

ART19 (v2.5.8).  We executed STing (fast mode) over each generated sample to measure the accuracy in 304 

terms of the percentage of correct STs and alleles predicted from the total samples at each sequencing 305 

depth.  We also evaluated the performance of STing in multicore environments.  We executed 20 parallel 306 

instances of STing to analyze the 1,306 samples and measured the average time required to process the 307 

complete dataset at each sequencing depth. 308 

Large-scale sequence type schemes comparison test design.  To evaluate the scalability, accuracy, and 309 

performance of our application on large-scale sequence typing schemes, we compared STing (fast and 310 

sensitive modes) on 20 samples of N. meningitidis against other sequence typing applications using the 311 

rMLST (loci=53) and the cgMLST (loci=1,605) schemes.  We used three applications (stringMLST, SRST2, and 312 

Offline CGE) for rMLST, and three applications (stringMLST, MentaLiST, and Offline CGE) for cgMLST, which 313 

were able to execute the sequence typing analysis successfully using these larger schemes.  For each 314 

application and typing scheme, we measured the accuracy in terms of the percentage of correct allele 315 

predictions from the total alleles of the tested samples and the performance in terms of the average of run 316 

time and maximum peak of RAM required to process each sample from the dataset. 317 

Gene detection test design.  We evaluated the ability of STing to predict the presence/absence of 318 

sequences of interest in NGS read samples by detecting antimicrobial resistance (AMR) genes and virulence 319 

factor (VF) genes in simulated Illumina read datasets.  We retrieved 71 assemblies from the GenBank 320 

database that correspond to 25 species listed in the World Health Organization priority list of antibiotic-321 

resistant bacteria and tuberculosis9 (Supplementary Data).  Then, we simulated Illumina paired-end reads 322 

– HiSeq 2500, 2x150bp, 500bp of average fragment size, with 10 as the fragment size standard deviation – 323 

from each genome at 20x and 40x sequencing depth, using the software ART.  For the AMR gene detection 324 

test, we used 1,434 AMR genes available in the Comprehensive Antibiotic Resistance Database (CARD, 325 

v2.0.2)7.  For the VF gene detection test, we used 1,443 genes from the virulence factor database (VFDB, 326 

release date 03-22-2019)8.  In both tests, we first defined the presence/absence of each gene in each 327 

genome using BLASTn (v2.2.28+)20, as a ground-truth for assessing STing’s performance.  To perform a fair 328 

comparison with STing’s gene detection, which is based is based on exact pattern matching, we defined a 329 

cutoff of 100% for identity and query (gene) coverage in BLASTn to consider a gene as present in a genome, 330 

i.e., if the gene is perfectly contained in the genome.  Then, we built databases on STing for each gene set 331 

of interest (CADR and VFDB), and executed the respective gene detection analysis on each genome-derived 332 

read set at each sequencing depth, using a threshold of 100% for gene coverage to consider a gene as 333 
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present in a sample.  Finally, we evaluated the performance of detection in terms of sensitivity, specificity, 334 

precision, and accuracy, which are defined as follows: 335 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
;  𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =

𝑇𝑁

𝑇𝑁+𝐹𝑃
;  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑃

𝑇𝑃+𝐹𝑃
;  𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
;  336 

where, 𝑇𝑃 = true positives, 𝑇𝑁 = true negatives, 𝐹𝑃 = false positives, and 𝐹𝑁 = false negatives. 337 
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