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ABSTRACT Members of the Klebsiella genus promote plant growth. We report here
draft whole-genome sequences for 15 Klebsiella sp. isolates from sugarcane fields in
the Cauca Valley of Colombia. The genomes of these isolates were characterized as
part of a broader effort to evaluate their utility as endemic plant growth-promoting
biofertilizers.

The genus Klebsiella belongs to the family Enterobacteriaceae and includes nonmotile
rod-shaped Gram-negative bacteria with polysaccharide capsules. Members of the

Klebsiella genus are exceptionally widespread in nature; Klebsiella spp. inhabit both
water and soil environments, and they are associated with numerous plant and animal
species (1). Klebsiella spp. are known to promote plant growth by colonizing plant
tissues (roots) and providing essential nutrients to their plant hosts (2). For example,
Klebsiella spp. encode the biochemical capacity to fix nitrogen, i.e., to convert molecular
nitrogen to organic nitrogen in the form of ammonium (3). Plant growth promotion can
also be facilitated via a number of other mechanisms, including phosphate solubiliza-
tion, the production of phytohormones, an increase in nutritional uptake, and control
of environmental stress (4, 5). The aim of this project was to use the analysis of Klebsiella
sp. isolate genome sequences to evaluate their potential as biofertilizers. Given the fact
that some Klebsiella spp. are known (opportunistic) pathogens, genome sequence
analysis can also be used to mitigate the potential risk they pose to human populations
if included as part of a bioinoculum.

The 15 Klebsiella sp. isolates characterized here were isolated from INCAUCA sug-
arcane fields, either from plants’ root zones or directly from plant tissue. All isolates
were grown overnight on LB medium (Difco) at 37°C. Genomic DNA was isolated using
the E.Z.N.A. bacterial DNA kit (Omega Bio-tek), and paired-end fragment libraries were
constructed using the Nextera XT DNA library preparation kit (Illumina), with a fragment
length of 1,000 bp. Libraries were sequenced on an Illumina MiSeq platform using V3
chemistry, yielding approximately 400,000 paired-end 300-bp sequence reads per
sample. Sequence read quality control was performed using the program FastQC
version 0.11.5 (6). Adapter/primer sequences and low-quality bases and reads (Q � 20)
were removed using Trimmomatic version 0.35 (7).
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The 15 Klebsiella sp. isolate genomes were assembled using the de novo assembler
SPAdes version 3.6 (8). The summary statistics for the resulting assemblies indicate the
completeness of the work. The genome coverages range from 50� to 88�, with an
average of 64� coverage, which is more than sufficient to produce reliable assemblies.
Accordingly, the genome assembly metrics are robust; N50 values range from 65,329 bp
to 614,324 bp, with an average N50 of 290,406 bp, and L50 values range from 3 to 29,
with an average value of 8.9. Finally, the genome size and GC content values inferred
from the assemblies are consistent with what is expected for Klebsiella species. Assem-
bled genome sizes range from 5.46 Mb to 6.09 Mb, with an average size of 5.64 Mb, and
the GC content values range from 56.7% to 57.5%, with an average GC content of
57.1%.

Isolate genome sequences were annotated using the Rapid Annotations using
Subsystems Technology (RAST) Web server (9–11). Functional predictions will be used
to prioritize strains that are simultaneously enriched for nitrogen fixing and other plant
growth-promoting genes while containing minimal antibiotic resistance genes and
virulence factors.

Accession number(s). This whole-genome shotgun project has been deposited at
DDBJ/ENA/GenBank under the accession numbers shown in Table 1.
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